Exercise sheet - Week 14 (Probabilistic Toolbox)

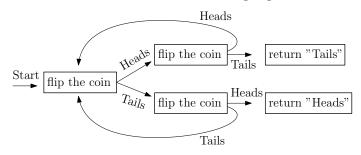
EXERCISE 1 -Reservoir Sampling

What is the output of the following algorithm? (Assuming that successive calls of rand() return independent uniform random variables in (0,1).)

input: List x₁,..., x_n
r = 0
for i = 1 to n:
 if rand()<1/i:
 r = x_i
return r

EXERCISE 2 -von Neumann's algorithm.

Consider an unfair coin that returns "tails" with probability $p \neq 1/2$. We want to use it to generate a fair heads or tails, John von Neumann¹ devised the following algorithm :



Let $\tau \in \mathbb{N} \cup \{+\infty\}$ be the random variable given by the number of throws required for the algorithm to stop, and $R \in \{\text{``Heads''}, \text{``Tails''}\}$ the output of the algorithm.

- 1. Give the values of τ and R if the first flips are TTTTHHTTTHHT?
- 2. For all $k \ge 1$, compute $\mathbb{P}(\tau = k)$. Deduce that the algorithm terminates almost surely : $\mathbb{P}(\tau < +\infty) = 1$.
- 3. Show that the algorithm returns "heads" or "tails" with equal probability, i.e. $\mathbb{P}(R = \text{``Heads''}) = 1/2$.
- 4. Show that $\mathbb{E}[\tau] = \frac{1}{p(1-p)}$.
- 5. (Bonus) How can the von Neumann algorithm be improved to reduce $\mathbb{E}[\tau]$?

EXERCISE 3 -Consecutive Heads

A fair coin is tossed infinitely many times. For $n \ge 1$, let M_n be the length of the longest sequence of consecutive "Heads" during the first n throws. For example :

										• • •
n-th toss	F	P	P	F	P	P	P	F	P	
M_n	0	1	2	2	2	2	3	3	3	

The aim of this exercise is to study the asymptotic behavior of the sequence (M_n) .

- 1. Show that for all $k \leq n$ we have $\mathbb{P}(M_n \geq k) \leq (n-k+1)(1/2)^k$.
- 2. Deduce the asymptotic behaviour of (M_n) : for all $\varepsilon > 0$

$$\mathbb{P}\left(M_n \ge (1+\varepsilon)\log_2(n)\right) \stackrel{n \to +\infty}{\to} 0.$$

^{1.} J.von Neumann. Various techniques used in connection with random digits. Appl. Math Ser, 12 (1951) p.36-38.