Exercise sheet - Week 15 (1st and 2d moment method)

EXERCISE 1 -Isolated vertices in $\mathcal{G}(n,p)$

Taken from : P.Brémaud (2017). Discrete probability models and methods. Springer. Let c > 0 and consider a realization G_n of the Erdös-Rényi random graph $\mathcal{G}(n, p_n)$ where

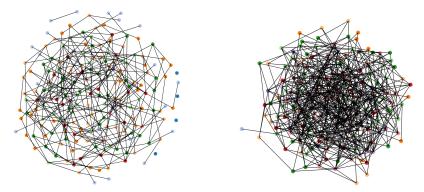
$$p_n = c \frac{\log(n)}{n}$$

The aim of the exercise is to prove that

- (i) If c > 1 then $\mathbb{P}(\text{no isolated vertices in } G_n) \xrightarrow{n \to +\infty} 1$.
- (ii) If c < 1 then $\mathbb{P}(G_n \text{ has at least one isolated vertex}) \xrightarrow{n \to +\infty} 1$.

For a vertex $u \in G_n$ let $Z_u = \mathbf{1}_u$ isolated and let $X_n = \sum_{u \in G_n} Z_u$ denote the number of isolated vertices in G_n .

- 1. Compute $\mathbb{E}[Z_u]$ and use the 1st moment method to prove (i).
- 2. Prove (ii) with the 2d moment method.



Two samples of $\mathcal{G}(n, p_n)$ with n = 200 and $p = 0.75 \frac{\log(n)}{n}$ (left) and $p = 1.13 \frac{\log(n)}{n}$ (right). Source : https://www.fitzner.nl/simulator/.

EXERCISE 2 -Average characteristics in $\mathcal{G}(n, p)$

Let $p \in (0,1)$ and consider a realization G_n of the Erdös-Rényi random graph $\mathcal{G}(n,p)$. Compute :

- 1. the average number of vertices of degree d.
- 2. the average number of cycles of length k (for some $k \leq n$).

EXERCISE 3 -Balancing vectors

Taken from : S.Roch. Modern Discrete Probability : An Essential Toolkit. Cambridge Univ. Press (2024).

Let v_1, \ldots, v_d be arbitrary unit vectors in \mathbb{R}^d . Prove that there exist $x_1, \ldots, x_d \in \{-1, +1\}$ such that

$$\parallel x_1v_1 + \dots + x_dv_d \parallel_2 \le \sqrt{d},$$

where

$$\parallel y \parallel_2 = \sqrt{\langle y, y \rangle} = \sqrt{\sum y_i^2}.$$