
Masterclass: Random uniform permutations (Nancy, June
2022)

Lucas Gerin, École Polytechnique (Palaiseau, France)
lucas.gerin@polytechnique.edu

This course is at the interplay between Probability and Combinatorics. It is intended for
Master students with a background in Probability (random variables, expectation, conditional
probability).

The question we will adress is ”What can we say about a typical large permutation?”: the
number of cycles, their lengths, the number of fixed points,... This is also a pretext to present
some universal phenomena in Probability: reinforcement, the Poisson paradigm, size-bias,...

Contents

1 How to simulate a random uniform permutation? 2
1.1 The naive algorithm . 3
1.2 The ”continuous” algorithm . 3
1.3 The ”Chinese restaurant” algorithm . 4

2 Typical properties of a random uniform permutation 6
2.1 Number of fixed points . 6
2.2 Number of inversions . 8
2.3 Number of cycles . 9
2.4 Size of the first cycle/first table . 9

3 The Chinese restaurant process 10
3.1 Size of the first cycle/first table (revisited) . 10

4 Applications 13
4.1 Applications to computer science: How to sort Sn efficiently? 13
4.2 Application to statistics: The Wilcoxon test . 16

Brief reminder on permutations

Before we turn to random permutations, we will give a few definitions regarding non-random (or
deterministic permutations).

A permutation of size n ≥ 1 is a bijection σ : {1, 2, . . . , n} → {1, 2, . . . , n}. For example

1 2 3 4
↓ ↓ ↓ ↓
2 4 3 1

is a permutation of size 4. In these notes we often write a permutation with its one-line represen-
tation σ(1)σ(2) . . . σ(n). For example the above permutation is simply written 2431.

There are n! permutations of size n.

1

Cycle decomposition

For our purpose, there is a convenient alternative way to encode a permutation: by its cycle
decomposition. A cycle is a finite sequence of distinct integers, defined up to the cycle order. This
means that the three following denote the same cycle:

(8, 3, 4) = (3, 4, 8) = (4, 8, 3),

while (8, 3, 4) 6= (8, 4, 3).
The cycle decomposition of a permutation σ is defined as follows. We give the theoretical

algorithm and detail the example of this permutation of size 7:

1 2 3 4 5 6 7
↓ ↓ ↓ ↓ ↓ ↓ ↓
6 3 1 5 7 2 4

Algorithm Example
Start with 1st cycle (1) (1)
Add to this cycle σ(1), then σ(σ(1)), then σ(σ(σ(1))),
and so one until one of these numbers is equal to 1.

(1) → (1, 6) → (1, 6, 2) → (1, 6, 2, 3)
and the cycle is over since σ(3) = 1.

Start the 2d cycle with a number which has not been
seen before.

1st cycle (1, 6, 2, 3). 2d cycle: (4)

Complete the 2d cycle with same procedure. 1st cycle (1, 6, 2, 3). 2d cycle: (4) →
(4, 5)→ (4, 5, 7).

Create new cycles until there is no remaining number. Done.

Finally, the cycle decomposition of σ is

(1, 6, 2, 3), (4, 5, 7)

It is convenient to represent the cycle decomposition of σ with the following diagram:

1

6

2

3

4

5 7

Exercise 1 What is the cycle decomposition of 62784315?

Remark . By construction the cycle decomposition is unique, up to a rearrangement of cycles.
For instance

(1, 6, 2, 3), (4, 5, 7) and (4, 5, 7), (1, 6, 2, 3)

describe the same permutation. A way to ensure uniqueness is to order cycles by the increasing
order of their smallest elements.

1 How to simulate a random uniform permutation?

We will first discuss the following question. Imagine that you are given a random number gener-
ator rand (in your favourite programming language) which returns independent uniform random
variables. How to use rand to simulate a random uniform permutation of size n?

2

1.1 The naive algorithm

It works as follows:

• Pick σ(1) uniformly at random in {1, 2, . . . , n} (n choices);

• Pick σ(2) uniformly at random in {1, 2, . . . , n} \ {σ(1)} (n− 1 choices);

• Pick σ(3) uniformly at random in {1, 2, . . . , n} \ {σ(1), σ(2)} (n− 2 choices),

and so on until σ(n) (1 choice).
By construction every permutation occurs with probability 1/n! so the output is uniform.

1.2 The ”continuous” algorithm

• Pick continuous i.i.d. random variables X1, X2, . . . , Xn with some density f ;

• With probability one the n values are pairwise distinct (see the proof below). Therefore there
exists a unique permutation σ such that

Xσ(1) < Xσ(2) < Xσ(3) < · · · < Xσ(n).

• This σ is your output.

Proposition 1. For every n, the output of the continuous algorithm is uniform among the n!
permutations of size n.

Proof.
(We do the proof in the case where Xi’s are uniform in (0, 1).)
Step 1: The n values are distinct. We have to prove that

P (for all i 6= j, Xi 6= Xj) = 1.

We prove that the complement event {there are i, j such that Xi = Xj} has probability zero. First
we notice that

P(there are i 6= j such that Xi = Xj) = P (∪i 6=j {Xi = Xj}) ≤
∑
i 6=j

P (Xi = Xj) ,

by the union bound(i). Now,

P (Xi = Xj) =

∫
(0,1)2

1x=ydxdy =

∫
y∈(0,1)

(∫
x∈(0,1)

1x=ydx

)
dy =

∫
y∈(0,1)

(∫ y

x=y
dx

)
dy =

∫
y∈(0,1

0×dy = 0.

Step 2: The output σ is uniform. To avoid messy notations we make the proof in the case n = 3.
Since the 3 values X1, X2, X3 are distinct we have

1 = P(X1 < X2 < X3) + P(X1 < X3 < X2) + P(X2 < X1 < X3)

+ P(X2 < X3 < X1) + P(X3 < X1 < X2) + P(X3 < X2 < X1)

=

∫
(0,1)3

1x1<x2<x3dx1dx2dx3 +

∫
(0,1)3

1x1<x3<x2dx1dx2dx3 +

∫
(0,1)3

1x2<x1<x3dx1dx2dx3

+

∫
(0,1)3

1x2<x3<x1dx1dx2dx3 +

∫
(0,1)3

1x3<x1<x2dx1dx2dx3 +

∫
(0,1)3

1x3<x2<x1dx1dx2dx3.

Now, x1, x2, x3 are dummy variables in the above integrals, so they are interchangeable. Therefore, these

6 integrals are identical and each of these is 1/6 = 1/3!.

(i)The union bound says that P
(⋃

n≥1An

)
≤∑n≥1 P(An) for every sequence of events (An).

3

1.3 The ”Chinese restaurant” algorithm

We introduce the Chinese restaurant algorithm, also called the Fisher-Yates algorithm (or even
Fisher-Yates-Knuth algorithm). The main difference with the two previous algorithms is that the
output σ will be described through its cycle decomposition.

The algorithm runs as follows:

• Assume we are given infinitely many ”restaurant tables” C1, C2, These tables are large
enough so that an arbitrary number of people can sit at each table.

. . .C1 C2 C3

• Infinitely many customers 1, 2, 3, . . . enter the restaurant, one at a time. Put Customer n.1
at table C1:

. . .C1 C2 C3
1

• With equal probability one-half, put Customer n.2 either at the same table as 1 (on its right)
or alone at the new table C2:

. . .C1 C2 C3
1

2

• With equal probability one-third, put Customer n.3 either on the right of 1, or on the right
of 2, or alone at the first empty table:

. . .C1 C2 C3
1

2
3

• . . .

• Assume that customers 1, 2, . . . , n− 1 are already installed. With equal probability 1/n, put
Customer n either on the right of 1, . . . , or on the right of n− 1, or alone at the first empty
table (here n = 8):

4

. . .C1 C2 C3
1

2 6

3

5

7

4

8

Now, we return the permutation σ whose cycle decomposition corresponds to table repartitions.
Assume here that 8 sits alone, we obtain the diagram

. . .C1 C2 C3
1

2 6

3

5

7

4

8

This can also be written (126)(3547)(8). The corresponding permutation is

1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 6 5 3 7 1 4 8

Proposition 2. For every n, the output of the Chinese restaurant algorithm is uniform among
the n! permutations of size n.

Proof. By construction, each table repartition with n customers occurs with the same probability

1× 1

2
× 1

3
× · · · × 1

n
.

Now, each table repartition corresponds to exactly one permutation of size n. Therefore each
permutation occurs with probability 1/n!.

Simulations

Here is a simulation for n = 30:

Here is a simulation for n = 2000 (We only represent sizes of tables. They have respective sizes
122, 673, 631, 68, 176, 159, 35, 8, 28, 91, 2, 5, 1, 1.):

5

A last simulation for n = 30000. Tables have sizes 15974, 11238, 31, 2121, 99, 25, 397, 97, 13, 2, 3.

For more on the Chinese restaurant we refer to [5]. On the following webpage you can run
simulations of the Chinese restaurant by yourself:

http://gerin.perso.math.cnrs.fr/Enseignements/ChineseRestaurant.html

2 Typical properties of a random uniform permutation

Frow now on Sn denotes a random uniform permutation of size n, generated by any of the previous
algorithms.

2.1 Number of fixed points

Definition 1. Let σ be a permutation of size n. The integer 1 ≤ i ≤ n is a fixed point of σ if
σ(i) = i.

For example, 2431 has a unique fixed point at i = 3.

Proposition 3. Let Fn be the number of fixed points of Sn. For every n, we have that(ii)

E[Fn] = 1, Var(Fn) = 1.

This is quite surprising that E[Fn] and Var(Fn) do not depend on n.

Proof. We write Fn =
∑n

i=1Xi, where

Xi =

{
1 if Sn(i) = i,

0 otherwise
.

Random variables Xi’s are not independent. Still we have by linearity of expectation that

E[Fn] = E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn],

and we are left to compute E[Xi] for every i. Now,

P(Xi = 1) = P(Sn(i) = i) =
card {permutations s of size n with s(i) = i}

card {permutations of size n} =
(n− 1)!

n!
=

1

n
.

(Indeed, a permutation such that s(i) = i is also a permutation of the set {1, 2, . . . , i− 1, i+ 1, . . . , n}
of size n− 1.) Therefore we have that

E[Xi] = 1× P(Xi = 1) + 0× P(Xi = 0) = 1/n.

(ii)Thank you to Amic Frouvelle for pointing me that the variance was wrong in the previous version of these
notes.

6

http://gerin.perso.math.cnrs.fr/Enseignements/ChineseRestaurant.html

Finally
E[Fn] = E[X1] + · · ·+ E[Xn] = n× 1/n = 1.

In order to compute the variance we will use the formula

Var(
∑

Xi) =
∑
i

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

= nVar(X1) + n(n− 1)Cov(X1, X2)

By the previous computation we have:

E[X1] = 1
n
, Var(X1) = 1

n
(1− 1

n
).

Similarly as above we can compute

E[X1X2] = P(X1 ×X2 = 1) = P(X1 = 1, X2 = 1) =
(n− 2)!

n!
=

1

n(n− 1)
.

Hence Cov(X1, X2) = 1
n(n−1) − E[X1]E[X2] = 1

n(n−1) − 1
n2 . Finally

Var(Fn) = 1− 1

n
+ n(n− 1)

1

n2(n− 1)
= 1.

The Poisson paradigm

There is a general phenomenon in probability known as the Poisson paradigm. It says that if Xi’s
are 0/1 random variable such that

1. E[Xi] = P(Xi = 1) is ”small” for every i ;

2. Xi’s are ”almost” independent ;

then X =
∑
Xi is almost distributed like the Poisson distribution with mean

∑
E[Xi]. Here∑

E[Xi] =
∑n

i=1 1/n = 1 and one can make the Poisson paradigm rigorous:

Proposition 4 (See [8]). Let (Sn)n be a sequence of random uniform permutations, and let Fn be
the number of fixed points of Sn. Then Fn converges in distribution to the Poisson distribution
with mean 1, i.e.

P(Fn = k)
n→+∞→ P(Poisson(1) = k) =

e−1

k!
,

for every k = 0, 1, 2,

For more on the Poisson paradigm, we refer to [2].

7

2.2 Number of inversions

An inversion in σ is a pair (i, j) such that{
i < j,

σ(i) > σ(j)
.

Let Inv(σ) be the number of inversions of σ. For example, if σ = 43152 then Inv(σ) = 6 (each arc
counts for an inversion):

4 3 1 5 2σ:

Proposition 5. For every n, let Sn be a uniform random permutation of size n. Then

E[Invn(Sn)] =
n(n− 1)

4
.

Proof. We will make a combinatorial proof, with (almost) no computation. First, let σ̃ be the
reversed permutation of σ: for every 1 ≤ i ≤ n,

σ̃(i) = n+ 1− σ(i).

For instance, if σ = 43152 then σ̃ = 23514. Then by construction we have that an arbitrary pair
(i, j) is an inversion for σ if and only if it is not an inversion for σ̃. We deduce that

Inv(σ) + Inv(σ̃) = card { all pairs 1 ≤ i < j ≤ n} =

(
n

2

)
=
n(n− 1)

2
.

Here we see that Inv(43152) + Inv(23514) = 6 + 4 =
(
5
2

)
:

4 3 1 5 2σ:

2 45 13σ̃:

Now, we apply the above equality to σ = Sn and take expectations of both sides:

E
[
Inv(Sn)

]
+ E

[
Inv(S̃n)

]
=
n(n− 1)

2
.

But now, it is obvious that σ 7→ σ̃ is a bijection so it preserves the uniform measure. Therefore S̃n
is also a uniform random permutation and we have E

[
Inv(Sn)

]
= E

[
Inv(S̃n)

]
. The proof is done.

8

2.3 Number of cycles

Proposition 6. Let Cn be the number of cycles of Sn. When n→ +∞,

E[Cn]
n→+∞∼ log(n).

Proof. We may assume that Sn is the output of the Chinese restaurant algorithm. All along the
process of the Chinese restaurant, a new cycle appears when a customer sits at a new table:

Cn =
n∑
i=1

Zi,

where

Zi =

{
1 if Customer i sits at a new table,

0 otherwise
.

Customer i sits at a new table with probability 1/i, therefore E [Zi] = 1/i. Then,

E[Cn] = E

[
n∑
i=1

Zi

]
=

n∑
i=1

E [Zi] =
n∑
i=1

1

i
.

Now, we use the fact that(iii)
∑n

i=1
1
i
∼ log(n).

Remark . Random variables (Zi) are actually independent (each customer sits at a new table, no
matter what happened before). Thus we can easily calculate the variance:

Var(Cn) =
n∑
i=1

Var(Zi) =
n∑
i=1

1

i
(1− 1

i
) ∼ log(n).

2.4 Size of the first cycle/first table

Let T1(n) be the number of customers at Table 1 in the Chinese restaurant process at time n. By
Proposition 2, we have that the random variable T1(n) has the distribution of the cycle of 1 in the
cycle decomposition of a random uniform permutation of size n.

Proposition 7. For every n, the random variable T1(n) is uniformly distributed in {1, 2, . . . , n},
i.e.

P(T1(n) = i) =
1

n
, for every i ∈ {1, 2, . . . , n} .

Proof. For i = 1, . . . , n, let us enumerate the permutations in which T1(n) = i. We have to choose
i−1 elements x1, . . . , xi−1 (

(
n−1
i−1

)
choices) which belong to this cycle, and put them in a given order

((i − 1)! choices). Then, the n − i remaining elements form a permutation of size n − i ((n − i)!
choices).

(iii)See https://en.wikipedia.org/wiki/Harmonic series (mathematics)

9

. . .C1

1
x1

i people at table 1 bijection of size n-i

x2

xi−1

. . .

Therefore

P(T1(n) = i) =
card {permutations of size n with T1(n) = i}

n!

=
1

n!

(
n− 1

i− 1

)
(i− 1)!(n− i)!

=
1

n!

(n− 1)!

(i− 1)!(n− i)!(i− 1)!(n− i)! =
1

n
.

3 The Chinese restaurant process

We already saw that in order to study the properties of Sn it may be useful to consider that Sn is
the output of the Chinese restaurant process. Let us show some more applications.

3.1 Size of the first cycle/first table (revisited)

We first provide another proof of Proposition 7 using the Chinese restaurant process. The idea is
to look at the process (T1(n))n≥1, which is actually known as the Pólya Urn process [6].

Proof. The proof goes by induction. For n = 1 this is obvious since with probability one T1(1) = 1.
Assume now that for some n ≥ 1, the random variable T1(n) is uniform in {1, 2, . . . , n}. If

T1(n) = i, then Customer n+ 1 sits at table 1 with probability i/(n+ 1).

. . .C1 C2 C3

1

2 6

3

5

7

4

Customer n+1

i people at table 1

prob.n+1−i
n+1

n-i people at tables 2, 3, 4, . . .

prob. i
n+1

8

Figure: A sketch of the situation when Customer n+ 1 tries to sit.

10

Therefore

T1(n+ 1) =

{
i+ 1 with probab. i

n+1
,

i with probab. n+1−i
n+1

.
(1)

Fix j ∈ {1, . . . , n+ 1}. The above argument implies that

P(T1(n+ 1) = j) = P(T1(n+ 1) = j|T1(n) = j)P(T1(n) = j)

+ P(T1(n+ 1) = j|T1(n) = j − 1)P(T1(n) = j − 1)

=
n+ 1− j
n+ 1

× P(T1(n) = j) (apply (1) with i = j.)

+
j − 1

n+ 1
× P(T1(n) = j − 1) (apply (1) with i = j − 1.)

=
n+ 1− j
n+ 1

× 1

n
+
j − 1

n+ 1
× 1

n
(recall T1(n) is uniform)

=
n

(n+ 1)n
=

1

n+ 1
,

which proves that T1(n+ 1) is uniform in {1, . . . , n+ 1}.

This approach tells us more about the cycle decomposition of Sn. For instance it is very easy
to compute the probability that i, j belong to the same cycle.

Proposition 8. Let 1 ≤ i < j ≤ n. Then

P(i, j belong to the same cycle of Sn) =
1

2
.

Proof. As all integers play the same role in Sn we have that

P(i, j belong to the same cycle of Sn) = P(1 and 2 belong to the same cycle of Sn)

= P(2 does not sit at the same table as 1) =
1

2
.

Exercise 2 Let 1 ≤ i < j < k ≤ n. What is the probability that among i, j, k two of them
exactly are in the same cycle?

Solution:

1 = P(i, j, k belong to the same cycle) + P(i, j, k belong to two cycles) + P(i, j, k belong to three cycles)

= P(1, 2, 3 belong to the same cycle) + P(1, 2, 3 belong to two cycles) + P(1, 2, 3 belong to three cycles)

=
1

2
× 2

3
+ P(1, 2, 3 belong to two cycles) +

1

2
× 1

3

and finally the solution is 1− 1/3− 1/6 = 1/2.

11

Discussion: the reinforcement phenomenon

The Chinese restaurant process illustrates the reinforcement phenomenon which is very common
in Probability. It is also known as the ”rich gets richer” phenomenon. Indeed, we observe that the
more people there are at Table 1 at a given time, the more there will be in the future.

As an application, it turns out that because Table 1 appears sooner than Table 2, Table 1 is
much more occupied (in average) than Table 2.

Proposition 9. For large n, we have that

E[T1(n)]
n→+∞∼ n

2
, E[T2(n)]

n→+∞∼ n

4
.

Proof. First, we claim that conditionally on the event {T1(n) = i}, then T2(n) is uniformly dis-
tributed in {1, 2, . . . , n− i}: for every j ≤ n− i we have

P(T2(n) = j | T1(n) = i) =

{
1
n−i if i < n,

0 if i = n.

We skip the proof, which is very similar to the proof of Proposition 7 (in this case the combinatorial
proof is easier).

Consequently, if we condition on the event {T1(n) = i} we have that

E[T2(n)|T1(n)] = E[Uniform random var. in {1, 2, . . . , n− T1(n)}]

=
1 + n− T1(n)

2
.

Now, by the tower property of conditional expectation(iv) we obtain

E[T2(n)] = E
[
E[T2(n)|T1(n)]

]
= E

[
1 + n− T1(n)

2

]
=

1 + n− n/2
2

∼ n

4
.

We can go one step further and ask for the distribution of T3(n), T4(n), One can prove the
following generalization of Proposition 7 (see [5, Sec.3.1], I am curious for the original reference).

Proposition 10. Let U1, U2, . . . be i.i.d. uniform random variables in (0, 1). Then for every k ≥ 1(
T1(n)

n
,
T2(n)

n
, . . . ,

Tk(n)

n

)
(d)→ (U1 , (1− U1)U2 , (1− U1)(1− U2)U3 , . . .) (2)

In particular if we consider expectations of both sides in (2) we get:(
E[T1(n)]

n
,
E[T2(n)]

n
, . . . ,

E[Tk(n)]

n

)
(d)→
(

1

2
,
1

4
, . . . ,

1

2k

)
.

(iv)This says that E[E[X|Y]] = E[X].

12

Discussion: the size-bias phenomenon

We conclude by investigating an apparent paradox:

• In average, there are n/2 people at the same table as 1. But recall that the output of the
Chinese restaurant process is uniform in Sn so by symmetry, every element in {1, 2, . . . , n}
plays the same role: this table can be considered as a typical table.

• There are in average log(n) distinct tables, so a typical table should have (in average) about

Number of customers

Number of tables
≈ n

log(n)
� n

2

customers.

The paradox is that Table 1 is not typical: by saying that 1 sits at this table the size of this table
is biased. The size of Table 1 is overestimated compared to a ”true” typical table. This is the
size-bias phenomenon, whose a very nice introduction can be found in [1].

4 Applications

4.1 Applications to computer science: How to sort Sn efficiently?

We will discuss a different topic regarding random permutations: the analysis of sorting algorithms.
The problem is to find an algorithm for the following problem:
Input: Sequence of numbers x1, x2, . . . , xn
Output: Re-ordered sequence xσ(1) ≤ xσ(2) · · · ≤ xσ(n)

We consider that the cost of the algorithm driven on x1, . . . , xn is given by the number of
pairwise comparisons between xi’s. (We neglect in particular access to memory.)

Warm-up: the naive algorithm

As a basis for comparison we begin with a very naive algorithm.

1. Read the sequence x1, x2, . . . , xn and store the minimal value xσ(1) (this requires n− 1 com-
parisons),

2. Read the sequence x1, x2, . . . , xn \ {xσ(1)} and store the minimal value xσ(2) (this requires
n− 12 comparisons),

3. . . .

Overall the algorithm needs

(n− 1) + (n− 2) + (n− 3) + · · ·+ 1 ∼ n2

2

comparisons to sort the sequence. Various algorithms improve this bound and sort a list of n
elements with O(n log(n)) comparisons. We will focus on one of them: Quicksort.

13

The algorithm Quicksort

The algorithm uses the Divide-and-Conquer strategy, there are three steps:

1. Call x1 the pivot of the list.

2. Compare all the elements x2, . . . , xn with x1 and re-order the list so that

(a) elements < x1 come before the pivot,

(b) elements ≥ x1 come after the pivot.

3. Recursively apply strategy to both sub-lists.

Here are the first steps applied to the permutation 435162:

4,3,5,1,6,2 4
pivot

≥ 4

< 4

5,6

3,1,2

5
pivot

≥ 5

< 5

6

done.

3
pivot

done.

≥ 3

< 3

done.

1,2 1
pivot

≥ 1

< 1

2

done.

done.

5 comparisons

2 comparisons

1 comparison

1 comparison

Average-case analysis of Quicksort

Let Comp(x1, . . . , xn) be the number of pairwise comparisons between xi’s. For instance, in the
above example we have that

Comp(4, 3, 5, 1, 6, 2) = 5 + 1 + 2 + 1 = 9.

If the input is random, then Comp is a random variable.

Proposition 11. Let Sn = (Sn(1), . . . , Sn(n)) be a random uniform permutation of size n. Then,
when n→ +∞,

E
[
Comp(Sn(1), . . . , Sn(n))

]
= 2n log(n) + o(n log(n)).

Both the algorithm and its analysis were provided by Hoare [4]. A modern reference is [3].

Proof. As the execution of Quicksort only depends on the relative order of the elements of the
sequence the continuous algorithm shows that

Comp(Sn(1), . . . , Sn(n))
(d)
= Comp(X1, . . . , Xn)

where X1, . . . , Xn are independent random variables uniform in the interval (0, 1)
By construction X1 is the first pivot. Denote by Y1, . . . , YI−1 be the numbers > X1, and

Z1, . . . , Zn−I , so that I is the (random) rank of X1 in the sequence. Because of the recursive
strategy the number of comparisons is given by

Comp(X1, . . . , Xn) = n− 1︸ ︷︷ ︸
Comp. with X1

+Comp(Y1, . . . , YI−1) + Comp(Z1, . . . , Zn−I). (?)

We omit the proofs of the two following claims:

14

• The rank I is uniform in 1, 2, . . . , n.

• Conditionally on X1, the Yj’s are i.i.d. (and uniform in (0, X1)) and the Zj’s are i.i.d. (and
uniform in (X1, 1)).

Therefore, if we take expectations of both sides of (?) and put cn = E
[
Comp(X1, . . . , Xn)

]
then

we obtain

cn = n− 1 +
n∑
i=1

P(I = i) (ci−1 + cn−i)

= n− 1 +
1

n

n∑
i=1

ci−1 +
1

n

n∑
i=1

cn−i

= n− 1 +
2

n

n∑
i=1

ci−1,

with c0 = c1 = 0. In order to get rid of the sums we compute

ncn − (n− 1)cn−1 = n(n− 1) + 2
n∑
i=1

ci−1 − (n− 1)(n− 2)− 2
n−1∑
i=1

ci−1

= 2(n− 1) + 2
n∑
i=1

ci−1 − 2
n−1∑
i=1

ci−1

= 2(n− 1) + 2cn−1

so finally
ncn = 2(n− 1) + (n+ 1)cn−1.

This can be rewritten as:

n(cn + 2n) = 2n+ (n+ 1)(cn−1 + 2(n− 1)).

If we divide by n(n+ 1) we get

cn + 2n

n+ 1
=

2

(n+ 1)
+
cn−1 + 2(n− 1)

n
.

If we put dn := cn+2n
n+1

we have that

dn =
2

n+ 1
+

2

n
+

2

n− 1
+ · · ·+ 2

5
+

2

4
+ d2

=
2

n+ 1
+

2

n
+

2

n− 1
+ · · ·+ 2

5
+

2

4
+

5

3

= 2Hn+1 − 2(
1

1
+

1

2
+

1

3
) +

5

3
= 2Hn+1 − 2,

where Hn =
∑n

k=1 1/k = log(n) + γ + o(1). Finally

cn = 2(n+ 1)Hn+1 − 2(n+ 1)− 2n = 2n log(n)− 2.845569...× n+ o(n).

15

4.2 Application to statistics: The Wilcoxon test

Imagine the following statistical situation. You want to compare two populations X and Y for
which you have data X1, . . . , Xn and Y1, . . . , Ym and specifically you want to find statistical evi-
dences that X and Y are different.

The settings is that of a statistical test:
Hypothesis H0:

• X1, . . . , Xn are i.i.d. with common density f (unknown)

• Y1, . . . , Ym are i.i.d. with common density f (the same!)

Under Hypothesis H0 we are given a sample of size m+n of i.i.d. continuous random variables.
That gives us a uniform permutation of size n + m, no matter the density f ! Let us see how it
allows us to design a statistical test for H0.

For 1 ≤ i ≤ n let Ri be the rank of Xi in {X1, . . . , Xn, Y1, . . . , Ym}. For 1 ≤ j ≤ m let R′j be
the rank of Yj in {X1, . . . , Xn, Y1, . . . , Ym}.

Proposition 12. For every m,n and every i, j, if Hypothesis H0 holds then

E[Ri] = E[R′j] =
m+ n+ 1

2
.

In particular

E[R1 + · · ·+Rn] =
n(m+ n+ 1)

2
.

Proof. Under H0 random variables R1, . . . , Rn, R
′
1, . . . , R

′
m form a uniform permutation of size n+

m. In particular Ri is uniform in {1, 2, . . . , n+m} and therefore has expectation (n+m+1)/2.

More generally it can be proved that for sufficiently large n,m,

R1 + · · ·+Rn ≈ N (µm,n, σm,n) . (3)

where

µm,n =
n(m+ n+ 1)

2
, σm,n =

n(n+m)2

12
.

From this we can reject Hypothesis H0 if |∑i≤nRi−µm,n| is too large. Indeed (3) can be rigorously
stated as

P
(∣∣∣∣
∑

i≤nRi − µm,n√
σm,n

∣∣∣∣ > a

)
n,m→∞→ P (|Z| > a)

where Z is a standard N (0, 1). For a = 1.96 the above limit is close to 5% Thus we reject
Hypothesis H0 when ∣∣∣∣

∑
i≤nRi − µm,n√

σm,n

∣∣∣∣ > 1.96.

16

References

[1] R.Arratia, L.Goldstein. Size bias, sampling, the waiting time paradox, and infinite divisibil-
ity: when is the increment independent? Available at https://arxiv.org/abs/1007.3910

(2010).

[2] A.D.Barbour, L.Holst, S.Janson. Poisson approximation. Oxford Univ. Press (1992).

[3] P.Flajolet, R.Sedgewick. An introduction to the analysis of algorithms. Addison-Wesley (1996).

[4] C.A.Hoare. Quicksort. The Computer Journal, vol.5, n.1, p.10-16 (1962).

[5] J.Pitman. Combinatorial stochastic processes. Lecture notes for the Saint-Flour summer school
(available online) (2002).

[6] N.Pouyanne. Pólya urn models. Proceedings of Nablus’14 CIMPA Sum-
mer School: Analysis of Random Structures, p.65-87. Available at
https://hal.archives-ouvertes.fr/hal-01214113/ (2014).

[7] Wikipedia page of the 100 prisoners problem. https://en.wikipedia.org/wiki/100_

prisoners_problem.

[8] Wikipedia page of Rencontres numbers. https://en.wikipedia.org/wiki/Rencontres_

numbers.

17

https://en.wikipedia.org/wiki/100_prisoners_problem
https://en.wikipedia.org/wiki/100_prisoners_problem
https://en.wikipedia.org/wiki/Rencontres_numbers
https://en.wikipedia.org/wiki/Rencontres_numbers

	How to simulate a random uniform permutation?
	The naive algorithm
	The "continuous" algorithm
	The "Chinese restaurant" algorithm

	Typical properties of a random uniform permutation
	Number of fixed points
	Number of inversions
	Number of cycles
	Size of the first cycle/first table

	The Chinese restaurant process
	Size of the first cycle/first table (revisited)

	Applications
	Applications to computer science: How to sort Sn efficiently?
	Application to statistics: The Wilcoxon test

