Un modèle de flux automobile

Mots-clés : Combinatoire, Probabilités conditionnelles, Convergences de variables aléatoires

Le but du projet est d’étudier de façon théorique et expérimentale un modèle simplifié de flux automobile.

On considère un périphérique de longueur N, sur lequel circulent $1 \leq K < N$ voitures, sans se rentrer dedans (et sans pouvoir sortir ni entrer!). Voici un exemple avec $N = 12$, $K = 5$:

On note les voitures avec \bullet, de sorte qu’une configuration possible est un élément de $\{\bullet, o\}^{\mathbb{Z}/N\mathbb{Z}}$, sur le dessin c’est la configuration

$\bullet | \bullet | o | \bullet | o | \bullet | o | o | o |

L’évolution est la suivante : à chaque instant, on tire au sort uniformément l’un des N interstices "||" possibles, et si la configuration autour de cet interstice est $\bullet | o$ (une voiture avec une position vide devant elle) la voiture en question avance ; les $K - 1$ autres restent immobiles. Autrement dit,

$\begin{array}{c}
? | \bullet | o | ? \\
\text{prob. } \frac{1}{N}
\end{array}

\rightarrow

\begin{array}{c}
? | o | \bullet | ?
\end{array}$

Il y a au plus une modification à chaque instant.

On note $\sigma^t \in \{\bullet, o\}^{\mathbb{Z}/N\mathbb{Z}}$ la configuration à l’instant t, et $\sigma^t_i \in \{\bullet, o\}$ l’absence/presence d’une voiture à la position i au temps t.

1. Étude théorique.

Il y a $\binom{N}{K}$ configurations possibles, on suppose qu’à l’instant initial $\sigma^0 \in \{\bullet, o\}^{\mathbb{Z}/N\mathbb{Z}}$ est distribuée selon la loi uniforme sur ces $\binom{N}{K}$ configurations.

1. Soient s, s' deux configurations avec K voitures. Déterminer

$$\mathbb{P} (\sigma^{t+1} = s' \mid \sigma^t = s) .$$
Solution: Commençons par le cas où $s \neq s'$. On peut aller de s à s' dans le cas où s et s' diffèrent autour d’un interstice exactement :

\[s = ? | \bullet | \circ | ? \]
\[s' = ? | \circ | \bullet | ? \]

et alors $\mathbb{P}(\sigma^{t+1} = s' | \sigma^t = s) = 1/N$.
Si $s = s'$, alors on doit tomber sur un interstice qui n’est pas de la forme $\bullet|\circ$:

\[\mathbb{P}(\sigma^{t+1} = s | \sigma^t = s) = 1 - \frac{\text{card}\{i; \sigma_i = \bullet, \sigma_{i+1} = \circ\}}{N} . \]

2. (*) Démontrer que la loi uniforme est stationnaire pour ce modèle : pour tout $t \geq 1$, σ^t est également distribué selon la loi uniforme.

Solution: Soit s' une configuration fixée,

\[
\mathbb{P}(\sigma^{t+1} = s') = \sum_s \mathbb{P}(\sigma^{t+1} = s', \sigma^t = s) \\
= \sum_{s \neq s'} \mathbb{P}(\sigma^{t+1} = s' | \sigma^t = s) \times \mathbb{P}(\sigma^t = s) + \mathbb{P}(\sigma^{t+1} = s' | \sigma^t = s') \times \mathbb{P}(\sigma^t = s) \\
= \text{card}\{s \neq s', s \rightarrow s'\} \times \frac{1}{N} \mathbb{P}(\sigma^t = s) + \left(1 - \frac{\text{card}\{i; \sigma_i = \bullet, \sigma_{i+1} = \circ\}}{N}\right) \mathbb{P}(\sigma^t = s') \\
= \text{card}\{s \neq s', s \rightarrow s'\} \times \frac{1}{N} \left(\frac{1}{N K}\right) + \left(1 - \frac{\text{card}\{i; \sigma_i = \bullet, \sigma_{i+1} = \circ\}}{N}\right) \frac{1}{N K},
\]

où $\{s \rightarrow s'\}$ signifie que l’on peut aller de s à s' en une étape. Comme on est sur $\mathbb{Z}/N\mathbb{Z}$ on a (faire un dessin !) :

\[
\text{card}\{s \neq s', s \rightarrow s'\} = \text{card}\{i; s_i = \circ, s_{i+1} = \bullet\} = \text{card}\{i; s_i = \bullet, s_{i+1} = \circ\} .
\]

Finalement tout se simplifie :

\[
\mathbb{P}(\sigma^{t+1} = s') = \frac{1}{N K}.
\]

3. Vérifier que

\[
\mathbb{P}(\sigma_0^t = \bullet, \sigma_1^t = \circ) = \frac{K(N - K)}{N(N - 1)}
\]

(d’après la question précédente il est normal que cette probabilité ne dépende pas de t).
Solution: Une fois que l’on a fixé \(\{\sigma_0^t = \bullet, \sigma_1^t = \circ\} \) il reste à placer \(K-1 \) voitures parmi \(N-2 \) places :

\[
\mathbb{P}(\sigma_0^t = \bullet, \sigma_1^t = \circ) = \frac{\binom{N-2}{K-1}}{\binom{N}{K}} = \frac{K(N-K)}{N(N-1)}.
\]

4. On considère le flux \(N_t \) jusqu’à l’instant \(t \), c’est-à-dire le nombre de fois où une voiture est passée au point 1 :

\[N_t = \sum_{i=1}^{t} 1_{\{\sigma_i^{t-1} = \circ, \sigma_i^t = \bullet\}}. \]

Calculer \(\mathbb{E}[N_t] \).

Solution:

\[
\mathbb{E}[N_t] = \sum_{i=1}^{t} \mathbb{P}(\sigma_1^{i-1} = \circ, \sigma_1^i = \bullet) = \sum_{i=1}^{t} \mathbb{P}(\sigma_1^{i-1} = \circ, \sigma_1^i = \bullet) \times \frac{1}{N} \]

\[
= \frac{t}{N} K(N-K) \frac{N}{N(N-1)}
\]

(d’après la question précédente).

À partir de maintenant, on suppose que le périphérique est rempli avec une proportion
\(0 < \alpha < 1 \), c’est-à-dire \(K = \lfloor \alpha N \rfloor \).

5. Démontrer que

\[
\lim_{N \to +\infty} \mathbb{P}(\sigma_0^t = \bullet) = \alpha,
\]

\[
\lim_{N \to +\infty} \mathbb{P}(\sigma_0^t = \bullet, \sigma_1^t = \circ) = \alpha(1 - \alpha).
\]

Comment peut-on interpréter ce résultat ?

Solution: On a d’abord

\[
\mathbb{P}(\sigma_0^t = \bullet) = \frac{\binom{N-1}{K-1}}{\binom{N}{K}} = \frac{K}{N} \to \alpha.
\]

D’après la question 3, on a

\[
\mathbb{P}(\sigma_0^t = \bullet, \sigma_1^t = \circ) = \frac{\alpha N(N-\alpha N)}{N(N-1)} \to \alpha(1 - \alpha).
\]
Tout se passe donc comme si, pour \(N \) très grand, les présences de voitures en deux positions fixées étaient des Bernoulli \(\alpha \) indépendantes.

6. \((*)\) On tire \(\sigma^0 \) uniformément au hasard, puis on tire dans \(\sigma^0 \) une voiture uniformément au hasard parmi les \(K \) voitures. On note \(E \in \{1, 2, \ldots, N - K + 1\} \) l’écart avec la voiture précédente. Démontrer que pour tout \(\ell \geq 1 \),

\[
P(E = \ell) \overset{N \to +\infty}{\to} \mathbb{P}(G = \ell),
\]

où \(G \) suit la loi géométrique de paramètre \(\alpha \).

Solution: Notons \(V \in \mathbb{Z}/N\mathbb{Z} \) la position de la voiture tirée au sort.

\[
P(E = \ell) = \sum_{v=1}^{N} P(V = v; E = \ell) = \sum_{v=1}^{N} P(\text{il y a une voiture en } v; \text{ elle est tirée au sort}; E = \ell).
\]

Une fois que l’on a fixé une voiture en \(v \) et que \(E = \ell \), il reste \(K - 2 \) voitures à placer dans \(N - (\ell + 1) \) positions. Donc

\[
P(E = \ell) = \sum_{v=1}^{N} \frac{1}{K} \binom{N-(\ell+1)}{K-2} \binom{N}{K} \frac{(N-\ell-1)!}{(K-2)!(N-\ell-K+1)!} \frac{(N-K)!}{N!} \frac{(N-K)!}{(N-K-\ell+1)!} \\
= N(K-1) \frac{1}{N!(N-1)!} \frac{(N-K)!}{(N-K-\ell+1)!} \\
= N(K-1) \frac{1}{N(N-1)\ldots(N-\ell)(N-K)\ldots(N-K-\ell+2)} \\
\sim N\alpha N \frac{1}{N^\ell+1} (N - \alpha N)^{\ell-1} \to \alpha(1 - \alpha)^{\ell-1}.
\]

2. **Étude expérimentale.**

7. Simuler le processus \((\sigma^t)_{t \geq 0}\) (prévoir une sortie qui illustre la formation d’embouteillages en montrant sur le même graphique le système à plusieurs instants successifs).

8. D’après les questions théoriques, \(\mathbb{E}[N_t] \) est linéaire en \(t \). Illustrer le fait que \((N_t)_{t \geq 0}\) vérifie une Loi des Grands Nombres en traçant une réalisation de \((\frac{N_t}{t})_{t \geq 0}\).

9. On cherche à vérifier expérimentalement que, même si \(\sigma^0 \) n’est pas distribuée uniformément, la loi de \(\sigma^t \), lorsque \(t \) est grand, ne dépend pas de la distribution initiale et est très proche de la loi uniforme.
Pour un N et un α fixés (prendre N de l'ordre de quelques dizaines), simuler un grand nombre de fois le processus $(\sigma^t)_{t \geq 0}$, et tracer une approximation de la fonction

$$t \mapsto \mathbb{P}(\sigma^t_0 = \bullet, \sigma^t_1 = \circ).$$

Comparer avec le résultat de la question 5.

(Pour illustrer la convergence, il faut bien sûr toujours partir de la même configuration initiale, et essayer de la prendre très différente de la mesure uniforme. Par exemple lorsque les K voitures sont initialement voisines les unes des autres.)

10. Proposer et simuler un modèle simple où les voitures peuvent entrer et sortir.

3. Commentaires.

Ce modèle est en réalité un modèle de mécanique statistique connu sous le nom de TASEP en temps discret (pour Totally Asymmetric Simple Exclusion Process). Il décrit de façon très simplifiée l'évolution de particules soumises à un champ extérieur, on peut imaginer plusieurs variantes : évolution en temps continu, sur \mathbb{Z} tout entier, autres contraintes de saut, etc.

La question de la vitesse de convergence vers l'équilibre abordée à la question 9 est à ma connaissance un problème ouvert. Soit $\varepsilon > 0$ et $t_N(\varepsilon)$ le temps à partir duquel, uniformément en σ^0 et s,

$$\max_{\sigma^0,s} \left| \mathbb{P}(\sigma^{t_N} = s) - \frac{1}{\binom{N}{\alpha N}} \right| \leq \varepsilon.$$

On conjecture que $t_N(\varepsilon) \approx c_{\alpha, \varepsilon} N^{5/2}$.