Symbolic computing 1: Proofs with SymPy

Table of contents

- Introduction to SymPy
- Let SymPy do the proof
- Archimedes vs SymPy
- Matrices with SymPy
- Solving equations
- The easy case
- Bonus: When SymPy needs help

```
# execute this part to modify the css style
from IPython.core.display import HTML
def css_styling():
    styles = open("./style/custom2.css").read()
    return HTML(styles)
css_styling()
```

```
## loading python libraries
# necessary to display plots inline:
%matplotlib inline
# load the libraries
import matplotlib.pyplot as plt # 2D plotting library
import numpy as np # package for scientific computing
from pylab import *
from math import * # package for mathematics (pi, arctan, sqrt, factori
import sympy as sympy # package for symbolic computation
from sympy import *
```

Using python library SymPy we can perform exact computations. For instance, run and compare the following scripts:

```
print('With Numpy: ')
print('root of two is '+str(np.sqrt(2))+'')
print('the square of (root of two) is '+str(np.sqrt(2)**2)+'')
print('---------')
print('With SymPy: ')
print('root of two is '+str(sympy.sqrt(2))+'')
print('the square of (root of two) is '+str(sympy.sqrt(2)**2)+'')
```


With Numpy:

root of two is 1.41421356237
the square of (root of two) is 2.0
With SymPy:
root of two is sqrt(2)
the square of (root of two) is 2

One can expand or simplify expressions:

```
print('Simplification of algebraic expressions:')
print('the square root of 40 is '+str(sympy.sqrt(40))+'')
print('(root(3)+root(2))**20 is equal to '+str(expand((sympy.sqrt(3)+sympy.sqrt(2))*
#
print('----------------')
print('Simplification of symbolic expressions:')
var('x') # We declare a 'symbolic' variable
Expression=(x**2 - 2*x + 1)/(x-1)
print(str(Expression) + ' simplifies into '+str(simplify(Expression)))
```

```
Simplification of algebraic expressions:
the square root of 40 is 2*sqrt(10)
(root(3)+root(2))**20 is equal to 4517251249 + 1844160100*sqrt(6)
Simplification of symbolic expressions:
(x**2 - 2*x + 1)/(x - 1) simplifies into x - 1
```

With Sympy one can also obtain Taylor expansions of functions with series:

```
# Real variable
var('x')
Expression=cos(x)
print('Expansion of cos(x) at x=0: '+str(Expression.series(x,0)))
# integer variable
var('n',integer=True)
Expression=cos(1/n)
print('Expansion of cos(1/n) when n -> +oo: '+str(Expression.series(n,oo))) # oo m
```

Expansion of $\cos (x)$ at $x=0: 1-x^{* *} 2 / 2+x^{* *} 4 / 24+0\left(x^{* *} 6\right)$
Expansion of $\cos (1 / n)$ when $n->+o o: 1 /(24 * n * * 4)-1 /\left(2 *_{n} * * 2\right)+1+0(n$
** (-6), (n, oo) $)$

SymPy can also compute with "big O's". (By default $\mathcal{O}(x)$ is considered for $x \rightarrow 0$.)

```
var('x')
simplify((x+0(x**3))*(x+x**2+0(x**3)))
x**2 + x**3 + 0(x**4)
```

Remark. A nice feature of Sympy is that you can export formulas in LateX . For instance:

```
var('x y')
formula=simplify((cos(x+y)-sin(x+y))**2)
print(formula)
print(latex(formula))
```

$2 * \cos (x+y+p i / 4) * * 2$
$2 \backslash \cos \{2\}\{\backslash l e f t(x+y+\backslash f r a c\{\backslash p i\}\{4\} \backslash r i g h t)\}$

Warning: Fractions such as $1 / 4$ must be introduced with Rational (1,4) to keep Sympy from evaluating the expression. For example:

```
print('(1/4)^3 = '+str((1/4)**3))
print('(1/4)^3 = '+str(Rational(1,4)**3))
```

$(1 / 4)^{\wedge} 3=0.015625$
$(1 / 4)^{\wedge} 3=1 / 64$

Let SymPy do the proofs

Exercise 1. A warm-up

Do it yourself.
Set $\phi=\frac{1+\sqrt{5}}{2}$. Use SymPy to simplify $F=\frac{\phi^{4}-\phi}{1+\phi^{7}}$

```
phi=(1+sqrt(5))/2
formula=(phi**4-phi)/(phi**7+1)
print("F = "+str(formula))
print("simplified F = "+str(simplify(formula)))
F = (-sqrt(5)/2 - 1/2 + (1/2 + sqrt(5)/2)**4)/(1 + (1/2 + sqrt(5)/2)**7
)
simplified F = -4*sqrt(5)/29 + 14/29
```


Exercise 2. A simple (?) recurrence

We will see how to use SymPy to prove a mathematical statement. Our aim is to make as rigorous proofs as possible, as long as we trust SymPy.

Do it yourself.
Let a, b be two real numbers, we define the sequence $\left(u_{n}\right)_{n \geq 0}$ as follows:
$u_{0}=a, u_{1}=b \quad$ and for $n \geq 2$

$$
u_{n}=\frac{1+u_{n-1}}{u_{n-2}}
$$

1. Write a short program which returns the 15 first values of u_{n} in terms of symbolic variables a, b. The output should be something like:
$u_{-} 0=a$
$u_{-} 1=b$
$u_{-} 2=(b+1) / a$
2. Use SymPy to make and prove a conjecture for the asymptotic behaviour of the sequence $\left(u_{n}\right)$, for every reals a, b.
```
def InductionFormula(x,y):
    return (1+x)/y
var('a b')
Sequence=[a,b]
print('u_0 = a')
print('u_1 = b')
for i in range(2,15):
    Sequence.append(simplify(InductionFormula(Sequence[-1],Sequence[-2])))
    print('u_'+str(i)+' = '+str(Sequence[-1]))
```

$\mathrm{u} _0=\mathrm{a}$
$u_{-}^{-} 1=b$
$u_{-} 2=(b+1) / a$
$u_{-}^{-} 3=(a+b+1) /(a * b)$
$u_{-}^{-} 4=(a+1) / b$
$u_{-}^{-} 5=a$
$u_{-}^{-6}=b$
$u_{-}^{-7}=(b+1) / a$
$u_{-} 8=(a+b+1) /(a * b)$
$u_{-}^{-} 9=(a+1) / b$
$\mathrm{u}_{-}^{-} 10=\mathrm{a}$
$\mathrm{u}_{-}^{-11}=\mathrm{b}$
$u_{-}^{-} 12=(b+1) / a$
$u_{-} 13=(a+b+1) /(a * b)$
$\mathrm{u}_{-}^{-} 14=(\mathrm{a}+1) / \mathrm{b}$

Answers.

1. See the cell above.
2. If $a, b \neq 0$, the sequence is well defined and we observe that $u_{5}=u_{0} \quad$ and $u_{6}=u_{1}$
Since the sequence is defined by a recurrence of order two (i.e. u_{n} is a function of $u_{n-1}, u_{n-2} \quad$ this implies that the sequence is periodic: $u_{n+5}=u_{n} \quad$ for every n. So if we trust Sympy the proof is done.

Exercise 3. What if Archimedes had known Sympy ?

For $n \geq 1$, let \mathcal{P}_{n} be a regular 3×2^{n}-gon with radius 1 . Here is \mathcal{P}_{1} :

Archimedes (IIIrd century BC) used the fact that \mathcal{P}_{n} gets closer and closer to the unit circle to obtain good approximations of π.
We will use SymPy to deduce nice formulas for approximations of π.

Do it yourself. Let L_{n} be the length of any side of \mathcal{P}_{n}. Compute L_{1} and use the following picture to write L_{n+1} as a function of L_{n} :

- O is the center of the circle, $O C=1$.
- $(O B)$ is the bisector of $\widehat{D O C}$.
- $\widehat{O A C}$ is a right angle.

Answers. As $O B$ is the bisector we have that $C B=B D$, which both are sides of \mathcal{P}_{n+1}
Besides, $O A C$ is rectangle at A. By Pythagora's theorem

$$
1^{2}=O A^{2}+A C^{2}=O A^{2}+\left(L_{n} / 2\right)^{2}
$$

$B A C$ is also rectangle at A, therefore

$$
L_{n+1}^{2}=B C^{2}=A B^{2}+B C^{2}
$$

$$
=(1-O A)^{2}+\left(L_{n} / 2\right)^{2}
$$

$$
=\left(1-\sqrt{1-\left(L_{n} / 2\right)^{2}}\right)^{2}+\left(L_{n} / 2\right)^{2}
$$

$$
=1+1-\left(L_{n} / 2\right)^{2}-2 \sqrt{1-\left(L_{n} / 2\right)^{2}}+\left(L_{n} / 2\right)^{2}
$$

$$
=2-2 \sqrt{1-\left(L_{n} / 2\right)^{2}}
$$

Finally we obtain

$$
L_{n+1}=\sqrt{2-2 \sqrt{1-\left(L_{n} / 2\right)^{2}}} .
$$

```
Do it yourself.
```

1. Write a script which computes exact expressions for the first values $L_{1}, L_{2}, \ldots, L_{n} \quad$. (First try for small n 's.)
2. Find a sequence a_{n} such that $a_{n} L_{n}$ converges to π (we don't ask for a proof). Deduce some good algebraic approximations of π. Export your results in Latex in order to get nice formulas.
(In order to check your formulas, you may compute numerical evaluations. With SymPy , a numerical evaluation is obtained with $N($ expression) .)
```
SuccessiveApproximations=[1]
p=12
for n in range(1,p):
    OldValue=SuccessiveApproximations[-1]
    NewValue=expand(sqrt(2-2*sqrt(1-(OldValue**2)*Rational(1,4))))
    SuccessiveApproximations.append(NewValue)
    print(latex(simplify(3*(2**n)*NewValue)))
    print(N(NewValue*3*2**(n)))
```

```
6 \sqrt{- \sqrt{3} + 2}
3.10582854123025
12 \sqrt{- \sqrt{\sqrt{3} + 2} + 2}
3.13262861328124
24 \sqrt{- \sqrt{\sqrt{\sqrt{3} + 2} + 2} + 2}
3.13935020304687
48 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{3} + 2} + 2} + 2} + 2}
3.14103195089051
96 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3} + 2} + 2} + 2} + 2} + 2}
3.14145247228546
192 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3} + 2} + 2} + 2} + 2}
+ 2} + 2}
3.14155760791186
384 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\\sqrt{3} + 2} + 2} + 2}
+2} + 2} + 2} + 2}
3.14158389214832
768 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3} + 2} + 2
} + 2} + 2} + 2} + 2} + 2} + 2}
3.14159046322805
1536 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\\sqrt{\sqrt{3} +
2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2}
3.14159210599927
3072 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\\sqrt{\sqrt{\sqrt{\sqr
t{3}+2}+2}+2}+2}+2}+2}+2}+2}+2}+2}
3.14159251669216
6144 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\\sqr
t{\sqrt{3} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2}
3.14159261936538
```

Answers. When n goes large, \mathcal{P}_{n} gets closer and closer to the unit circle. As the perimeter of \mathcal{P}_{n} is $3 \times 2^{n} L_{n}$, we expect that

$$
3 \times 2^{n} L_{n} \rightarrow 2 \pi
$$

therefore we choose $a_{n}=3 \times 2^{n-1} \quad$. For $n=8$ we obtain:

$$
\pi \approx 384 \sqrt{-\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3}+2}+2}+2+2+2}+2}}}+2}}=3.141583892 \ldots
$$

Exercise 4. Matrices with SymPy

In Lab 2 we proved that if a_{n}, b_{n} are integers defined by

$$
a_{n}+b_{n} \sqrt{2}=(1+\sqrt{2})^{n},
$$

then

$$
\binom{a_{n}}{b_{n}}=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)^{n-1} \times\binom{ 1}{1}
$$

Do it yourself.

1. Use SymPy to find an explicit formula for a_{n}.
(In SymPy matrices are defined by Matrix ([$[a, b],[c, d]]$) .)
2. (Theory) Use the formula obtained at Question 1 to find real numbers c, R such that

$$
a_{n} \stackrel{n \rightarrow+\infty}{\sim} c R^{n}
$$

```
#Question 1
A=Matrix([[1, 2],[1, 1]])
var('n', integer=True)
Power=A** (n-1)
#print(Power)
an=latex(simplify(Power[0,0]+Power[0,1]))
bn=latex(simplify(Power[1,0]+Power[1,1]))
print('a_n ='+str(an))
print('b_n ='+str(bn))
```

$a_{-n}=\backslash f r a c\{1\}\{2\} \backslash \operatorname{left}(1+\backslash \operatorname{sqrt}\{2\} \backslash r i g h t)^{\wedge}\{n\}+\backslash f r a c\{1\}\{2\} \backslash l e f t(-\backslash s$
$q \bar{r} t\{2\}+1 \backslash r i g h t)^{\wedge}\{n\}$
b_n $=\backslash f r a c\{\backslash \operatorname{sqrt}\{2\}\}\{4\} \backslash l e f t\left(\backslash l e f t(1+\backslash \operatorname{sqrt}\{2\} \backslash r i g h t)^{\wedge}\{n\}-\backslash l e f t(-\backslash\right.$
sq̄rt $\{2\}+1 \backslash r i g h t) \wedge\{n\} \backslash r i g h t)$

Answers.

1. We export the result in LateX:

$$
\begin{aligned}
& a_{n}=\frac{1}{2}(1+\sqrt{2})^{n}+\frac{1}{2}(-\sqrt{2}+1)^{n} \\
& b_{n}=\frac{\sqrt{2}}{4}\left((1+\sqrt{2})^{n}-(-\sqrt{2}+1)^{n}\right) \\
& \text { 2. As }|-\sqrt{2}+1|<1 \quad \text {, we have that }(-\sqrt{2}+1)^{n} \rightarrow 0 \quad \text {. It follows that }
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =\frac{1}{2}(1+\sqrt{2})^{n}+\mathrm{o}(1) \\
& \sim \frac{1}{2}(1+\sqrt{2})^{n}
\end{aligned}
$$

Solving equations with SymPy

One can solve equations with Sympy. The following script shows how to solve $x^{2}=x+1 \quad$:

```
var('x') # we declare the variable
SetOfSolutions=solve( }x**2-x-1,x
print(SetOfSolutions)
```

$[1 / 2+\operatorname{sqrt}(5) / 2,-\operatorname{sqrt}(5) / 2+1 / 2]$

Exercise 5. Solving equations with Sympy: the easy case

We will use solve to handle a more complicated equation.
Let $n \geq 1$ be an integer, we are interested in solving the equation

$$
x^{3}+n x=1 .
$$

With the above script we plot $x \mapsto x^{3}$, and $x \mapsto 1-n x$ for $0 \leq x \leq 1$ and for several (large) values of n. This suggests that Equation (\star) has a unique real solution in the interval [0,1] , that we will denote by S_{n}.

```
RangeOf_x=np.arange(0,1,0.01)
plt.plot(RangeOf_x,RangeOf_x**3,label='$x\mapsto x$**3')
for n in [10, 20, 30]:
    f=[1-n*x for x in RangeOf_x]
    plt.plot(RangeOf_x,f,label='n ='+str(n)+' ')
plt.xlim(0, 1),plt.ylim(-1, 1)
plt.xlabel('Value of x')
plt.legend()
plt.title('Location of S_n')
plt.show()
```


Do it yourself. (Theory)

1. Prove that indeed for every $n \geq 1$. Equation (\star) has a unique real solution in the interval [0, 1]
2. According to the plot, what can we conjecture for the limit S_{n} ?

Answers.

1. The map $x \mapsto f(x)=x^{3}+n x-1 \quad$ is continuous and increasing on $[0,1]$. since

$$
f^{\prime}(x)=3 x^{2}+n>n>0
$$

Besides,
$f(0)=0^{3}-n \times 0-1=-1, \quad f(1)=1^{3}+n \times 1-1=n>0$.
By the intermediate value theorem, this implies that there is a unique $S_{n} \in(0,1)$ such that $f\left(S_{n}\right)=0$, i.e.

$$
\left(S_{n}\right)^{3}+n S_{n}=1
$$

2. On the figure above we observe that when $n \rightarrow+\infty$, the solution of Equation (\star) seems to get closer and closer to zero. We therefore conjecture

$$
\lim _{n \rightarrow+\infty} S_{n}=0
$$

Do it yourself.

1. Write a script which computes the exact expression of S_{n}.
2. Use SymPy to get the asymptotic expansion of S_{n} (up to $\mathcal{O}\left(1 / n^{5}\right)$). Check your previous conjecture.
```
var('x')
var('n',integer=True)
# Question 1.
Solutions=solve(x**3+n*x-1,x)
Sn=simplify(Solutions[0]) # The two other solutions are complex numbers
print("Sn = "+str(latex(Sn)))
# Question 2.
Taylor=series(Sn,n,oo,5)
print("Taylor expansion when epsilon -> 0 : "+str(Taylor))
Sn = \frac{- 2 \sqrt[3]{18} n + \sqrt[3]{12} \left(\sqrt{3} \sqrt{4 n^{
3} + 27} + 9\right)^{\frac{2}{3}}}{6 \sqrt[3]{\sqrt{3} \sqrt{4 n^{3} +
27} + 9}}
Taylor expansion when epsilon -> 0 : -1/n**4 + 1/n + 0(n**(-5), (n, oo)
)
```

Answers.

1. According to the above script,

$$
\frac{-2 \sqrt[3]{18} n+\sqrt[3]{12}\left(\sqrt{3} \sqrt{4 n^{3}+27}+9\right)^{\frac{2}{3}}}{6 \sqrt[3]{\sqrt{3} \sqrt{4 n^{3}+27}+9}}
$$

2. SymPy gives

$$
S_{n}=\frac{1}{n}-\frac{1}{n^{4}}+\mathcal{O}\left(1 / n^{5}\right)
$$

Indeed, this goes to zero as expected.

(Bonus) Exercise 6. Solving equations: when SymPy needs help

We consider the following equation:

$$
X^{5}-3 \varepsilon X^{4}-1=0
$$

where ε is a positive parameter. A quick analysis shows that if $\varepsilon>0$ is small enough then (\star) has a unique real solution, that we denote by S_{ε}.

The degree of this equation is too high to be solved by SymPy :

```
var('x')
var('e')
solve(x**5-3*e*x**4-1,x)
```

[]

Indeed, SymPy needs help to handle this equation.

In the above script we plotted the function $f(x)=x^{5}-3 \varepsilon x^{4}-1 \quad$ for some small ε. This suggests that $\lim _{\varepsilon \rightarrow 0} S_{\varepsilon}=1$

```
RangeOf_x=np.arange(0, 2,0.01)
def ToBeZero(x,eps):
    return x**5+x**4*(-3*eps) -1
eps=0.05
plt.plot(RangeOf_x,[ToBeZero(x,eps) for x in RangeOf_x],label='x**5+x**4*(-3*eps)-1'
plt.xlim(0, 2)
plt.ylim(-1, 1)
plt.plot([-2,2],[0,0])
plt.plot([1,1],[-2,2])
plt.xlabel('Value of x')
plt.title('Location of S_eps, with eps ='+str(eps))
plt.legend()
plt.show()
```


Do it yourself.
We admit that S_{ε} can be written as

$$
S_{\varepsilon}=1+r \varepsilon+s \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{3}\right)
$$

for some real r, s. Use SymPy to find r, s.
(You can use any SymPy function already seen in this notebook.)

```
var('r')
var('s')
var('eps')
Expression=ToBeZero(1+r*eps+s*eps**2+0(eps**3),eps)
Simple=simplify(Expression)
print(Simple)
solve([-3+5*r,5*s-12*r+10*r**2],[r,s])
-3*eps + 5*eps*r + 5*eps**2*s - 12*eps**2*r + 10*eps**2*r**2 + 0(eps**3
)
[(3/5, 18/25)]
```

Answers. If we plug $1+r \varepsilon+s \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{3}\right) \quad$ into equation (\star) we obtain (with the script):

$$
\begin{equation*}
0=-3 \varepsilon+5 r \varepsilon+5 s \varepsilon^{2}-12 r \varepsilon^{2}+10 r^{2} \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{3}\right) \tag{E}
\end{equation*}
$$

If we divide equation (\mathcal{E}) by $\boldsymbol{\varepsilon}$ we obtain
$0=-3+5 r+5 s \varepsilon-12 r \varepsilon+10 r^{2} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right)$,
which yields $-3+5 r=0 \quad$ by letting $\varepsilon \rightarrow 0$, i.e. $r=3 / 5$.
If we plug this into (\mathcal{E}) and divide by ε^{2} we obtain

$$
0=5 s-12 r+10 r^{2}+\mathcal{O}(\varepsilon)
$$

which gives $5 s-12 r+10 r^{2}=0 \quad$, i.e. $s=18 / 25$
Finally,

$$
S_{\varepsilon}=1+\frac{3}{5} \varepsilon+\frac{18}{25} \varepsilon^{2}+\mathcal{O}\left(\varepsilon^{2}\right)
$$

