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# execute this part to modify the css style
from IPython.core.display import HTML
def css_styling():

styles = open("./style/custom2.css").read()
return HTML(styles)

css_styling()

## loading python libraries

# necessary to display plots inline:
%matplotlib inline

# load the libraries
import matplotlib.pyplot as plt # 2D plotting library
import numpy as np # package for scientific computing  
from pylab import *

from math import * # package for mathematics (pi, arctan, sqrt, factorial ...)
import sympy as sympy # package for symbolic computation
from sympy import *



Using python library SymPy  we can perform exact computations.  For instance, run and

compare the following scripts:

One can expand or simplify expressions:

With Sympy  one can also obtain Taylor expansions of functions with series :

SymPy  can also compute with "big O's". (By default  is considered for .)(x) x → 0

With Numpy: 
root of two is 1.41421356237
the square of (root of two) is 2.0
---------
With SymPy: 
root of two is sqrt(2)
the square of (root of two) is 2

Simplification of algebraic expressions:
the square root of 40 is 2*sqrt(10)
(root(3)+root(2))**20 is equal to 4517251249 + 1844160100*sqrt(6)
----------------
Simplification of symbolic expressions:
(x**2 - 2*x + 1)/(x - 1) simplifies into x - 1

Expansion of cos(x) at x=0: 1 - x**2/2 + x**4/24 + O(x**6)
Expansion of cos(1/n) when n -> +oo: 1/(24*n**4) - 1/(2*n**2) + 1 + O(n
**(-6), (n, oo))

print('With Numpy: ')
print('root of two is '+str(np.sqrt(2))+'')
print('the square of (root of two) is '+str(np.sqrt(2)**2)+'')
print('---------')
print('With SymPy: ')
print('root of two is '+str(sympy.sqrt(2))+'')
print('the square of (root of two) is '+str(sympy.sqrt(2)**2)+'')

print('Simplification of algebraic expressions:')
print('the square root of 40 is '+str(sympy.sqrt(40))+'')
print('(root(3)+root(2))**20 is equal to '+str(expand((sympy.sqrt(3)+sympy.sqrt(2))**
#
print('----------------')
print('Simplification of symbolic expressions:')
var('x') # We declare a 'symbolic' variable
Expression=(x**2 - 2*x + 1)/(x-1)
print(str(Expression) + ' simplifies into '+str(simplify(Expression)))

# Real variable
var('x')
Expression=cos(x)
print('Expansion of cos(x) at x=0: '+str(Expression.series(x,0)))

# integer variable
var('n',integer=True)
Expression=cos(1/n)
print('Expansion of cos(1/n) when n -> +oo: '+str(Expression.series(n,oo)))   # oo means infinity (!)



Remark. A nice feature of Sympy  is that you can export formulas in . For

instance:

𝙻𝚊𝚝𝚎𝚇

Warning:  Fractions  such  as   must  be  introduced  with  Rational(1,4)  to  keep

Sympy  from evaluating the expression. For example:

1/4

Let SymPy do the proofs
Exercise 1. A warm-up

Do it yourself.

Set . Use SymPy  to simplify .ϕ = 1+ 5√
2 F = −ϕϕ4

1+ϕ7

x**2 + x**3 + O(x**4)

2*cos(x + y + pi/4)**2
2 \cos^{2}{\left (x + y + \frac{\pi}{4} \right )}

(1/4)^3 = 0.015625
(1/4)^3 = 1/64

F = (-sqrt(5)/2 - 1/2 + (1/2 + sqrt(5)/2)**4)/(1 + (1/2 + sqrt(5)/2)**7
)
simplified F = -4*sqrt(5)/29 + 14/29

var('x')
simplify((x+O(x**3))*(x+x**2+O(x**3)))

var('x y')
formula=simplify((cos(x+y)-sin(x+y))**2)
print(formula)
print(latex(formula))

print('(1/4)^3 = '+str((1/4)**3))
print('(1/4)^3 = '+str(Rational(1,4)**3))

phi=(1+sqrt(5))/2
formula=(phi**4-phi)/(phi**7+1)
print("F = "+str(formula))
print("simplified F = "+str(simplify(formula)))



Exercise 2. A simple (?) recurrence
We will see how to use SymPy to prove a mathematical statement. Our aim is to make as
rigorous proofs as possible, as long as we trust SymPy.

Do it yourself.
Let  be two real numbers, we de�ne the sequence  as follows:

 and for 

Write a short program which returns the  �rst values of  in terms of symbolic
variables . The output should be something like:

u_0 = a

u_1 = b

u_2 = (b + 1)/a

...

1. 

Use SymPy  to make and prove a conjecture for the asymptotic behaviour of the

sequence , for every reals .

2. 

a, b (un)n≥0
= a, = bu0 u1 n ≥ 2

= .un
1 + un−1
un−2

15 un
a, b

( )un a, b

u_0 = a
u_1 = b
u_2 = (b + 1)/a
u_3 = (a + b + 1)/(a*b)
u_4 = (a + 1)/b
u_5 = a
u_6 = b
u_7 = (b + 1)/a
u_8 = (a + b + 1)/(a*b)
u_9 = (a + 1)/b
u_10 = a
u_11 = b
u_12 = (b + 1)/a
u_13 = (a + b + 1)/(a*b)
u_14 = (a + 1)/b

def InductionFormula(x,y):
return (1+x)/y

var('a b')
Sequence=[a,b]

print('u_0 = a')
print('u_1 = b')
for i in range(2,15):

Sequence.append(simplify(InductionFormula(Sequence[-1],Sequence[-2])))
print('u_'+str(i)+' = '+str(Sequence[-1]))



Answers.
See the cell above.1. 
If , the sequence is well de�ned and we observe that  and

.
Since the sequence is de�ned by a recurrence of order two (i.e.  is a function of

 this implies that the sequence is periodic:  for every .
So if we trust Sympy the proof is done.

2. a, b ≠ 0 =u5 u0
=u6 u1

un
,un−1 un−2 =un+5 un n

Exercise 3. What if Archimedes had known Sympy ?

For , let  be a regular -gon with radius . Here is :

Archimedes (IIIrd century BC) used the fact that  gets closer and closer to the unit circle
to obtain good approximations of .
We will use SymPy to deduce nice formulas for approximations of .

n ≥ 1 n 3 × 2n 1 1

n
π

π



Do it yourself. Let  be the length of any side of . Compute  and use the
following picture to write  as a function of :

 is the center of the circle, .

 is the bisector of .

 is a right angle.

Ln n L1
Ln+1 Ln

O OC = 1
(OB) DOĈ

OAĈ

Answers. As  is the bisector we have that , which both are sides of
.

Besides,  is rectangle at . By Pythagora's theorem

 is also rectangle at , therefore

Finally we obtain

OB CB = BD
n+1

OAC A
= O + A = O + ( /2 .12 A2 C2 A2 Ln )2

BAC A
= BL2n+1 C2 = A + BB2 C2

= (1 − OA + ( /2)2 Ln )2

= (1 − + ( /21 − ( /2Ln )2
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√ )

2
Ln )2

= 1 + 1 − ( /2 − 2 + ( /2Ln )2 1 − ( /2Ln )2
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√ Ln )2

= 2 − 2 .1 − ( /2Ln )2
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√
= .Ln+1 2 − 2 1 − ( /2Ln )2

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

√



Do it yourself.
Write  a  script  which  computes  exact  expressions  for  the  �rst  values

. (First try for small 's.)
1. 

Find a  sequence  such that   converges to   (we  don't  ask  for  a  proof).
Deduce some good algebraic approximations of . Export your results in  in
order to get nice formulas.

2. 

(In order to check your formulas, you may compute numerical evaluations. With SymPy ,

a numerical evaluation is obtained with N(expression) .)

, , … ,L1 L2 Ln n
an anLn π

π 𝙻𝚊𝚝𝚎𝚡

Answers. When  goes large,  gets closer and closer to the unit circle. As the
perimeter of  is , we expect that

therefore we choose . For  we obtain:

n n
n 3 × 2nLn

3 × → 2π,2nLn
= 3 ×an 2n−1 n = 8

π ≈ 384 = 3.141583892...− + 2+ 2+ 2+ 2+ 2+ 2+ 23⎯⎯√
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

√
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

√
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯



⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯



⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯



⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯




6 \sqrt{- \sqrt{3} + 2}
3.10582854123025
12 \sqrt{- \sqrt{\sqrt{3} + 2} + 2}
3.13262861328124
24 \sqrt{- \sqrt{\sqrt{\sqrt{3} + 2} + 2} + 2}
3.13935020304687
48 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{3} + 2} + 2} + 2} + 2}
3.14103195089051
96 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3} + 2} + 2} + 2} + 2} + 2}
3.14145247228546
192 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3} + 2} + 2} + 2} + 2} 
+ 2} + 2}
3.14155760791186
384 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3} + 2} + 2} + 2} 
+ 2} + 2} + 2} + 2}
3.14158389214832
768 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3} + 2} + 2
} + 2} + 2} + 2} + 2} + 2} + 2}
3.14159046322805
1536 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{3} + 
2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2}
3.14159210599927
3072 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqr
t{3} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2}
3.14159251669216
6144 \sqrt{- \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqr
t{\sqrt{3} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2} + 2}
3.14159261936538

SuccessiveApproximations=[1]
p=12
for n in range(1,p):

OldValue=SuccessiveApproximations[-1]
NewValue=expand(sqrt(2-2*sqrt(1-(OldValue**2)*Rational(1,4))))
SuccessiveApproximations.append(NewValue)
print(latex(simplify(3*(2**n)*NewValue)))
print(N(NewValue*3*2**(n)))



Exercise 4. Matrices with SymPy
In Lab 2 we proved that if  are integers de�ned by

then

,an bn
+ = (1 + ,an bn 2⎯⎯√ 2⎯⎯√ )n

( ) = × ( )an

bn ( )1
1
2
1

n−1 1
1

Do it yourself.

Use SymPy  to �nd an explicit formula for .

(In SymPy  matrices are de�ned by Matrix([[a,b],[c,d]]) .)

1. 

(Theory) Use the formula obtained at Question 1 to �nd real numbers  such that2. 

an

c, R
c .an ∼n→+∞ Rn

Answers.
We export the result in LateX:1. 

As , we have that . It follows that2. 

an

bn

= +1
2 (1 + )2⎯⎯√ n 1

2 (− + 1)2⎯⎯√
n

= ( − )2⎯⎯√
4 (1 + )2⎯⎯√ n (− + 1)2⎯⎯√

n

− + 1 < 1|
|| 2⎯⎯√ |

|| (− + 1 → 02⎯⎯√ )n

an = + o(1)1
2 (1 + )2⎯⎯√ n

∼ .1
2 (1 + )2⎯⎯√ n

a_n =\frac{1}{2} \left(1 + \sqrt{2}\right)^{n} + \frac{1}{2} \left(- \s
qrt{2} + 1\right)^{n}
b_n =\frac{\sqrt{2}}{4} \left(\left(1 + \sqrt{2}\right)^{n} - \left(- \
sqrt{2} + 1\right)^{n}\right)

#Question 1
A=Matrix([[1,2],[1,1]])
var('n', integer=True)
Power=A**(n-1)
#print(Power)

an=latex(simplify(Power[0,0]+Power[0,1]))
bn=latex(simplify(Power[1,0]+Power[1,1]))
print('a_n ='+str(an))
print('b_n ='+str(bn))



Solving equations with SymPy
One  can  solve  equations  with  Sympy.  The  following  script  shows  how  to  solve

:= x + 1x2

Exercise 5. Solving equations with Sympy: the easy case
We will use solve  to handle a more complicated equation.

Let  be an integer, we are interested in solving the equation

With  the  above  script  we  plot  ,  and   for   and  for
several (large) values of . This suggests that Equation  has a unique real solution in the
interval , that we will denote by .

n ≥ 1
+ nx = 1.x3 (⋆)

x ↦ x3 x ↦ 1 − nx 0 ≤ x ≤ 1
n (⋆)

[0, 1] Sn

[1/2 + sqrt(5)/2, -sqrt(5)/2 + 1/2]

var('x') # we declare the variable
SetOfSolutions=solve(x**2-x-1,x)
print(SetOfSolutions)

RangeOf_x=np.arange(0,1,0.01)

plt.plot(RangeOf_x,RangeOf_x**3,label='$x\mapsto x$**3')

for n in [10, 20, 30]:
f=[1-n*x for x in RangeOf_x]
plt.plot(RangeOf_x,f,label='n ='+str(n)+' ')

plt.xlim(0, 1),plt.ylim(-1, 1)
plt.xlabel('Value of x')
plt.legend()
plt.title('Location of S_n')
plt.show()



Do it yourself. (Theory)

Prove that indeed for every , Equation  has a unique real solution in the
interval .

1. 

According to the plot, what can we conjecture for the limit ?2. 

n ≥ 1 (⋆)
[0, 1]

Sn

Answers.

The map  is continuous and increasing on ,
since

Besides,

By the intermediate value theorem, this implies that there is a unique 
such that , i.e.

1. 

On the �gure above we observe that when , the solution of Equation
 seems to get closer and closer to zero.

We therefore conjecture

2. 

x ↦ f (x) = + nx − 1x3 [0, 1]

(x) = 3 + n > n > 0.f ′ x2

f (0) = − n × 0 − 1 = −1, f (1) = + n × 1 − 1 = n > 0.03 13
∈ (0, 1)Sn

f ( ) = 0Sn
( + n = 1.Sn)3 Sn

n → +∞
(⋆)

= 0.lim
n→+∞

Sn

Do it yourself.

Write a script which computes the exact expression of .1. 

Use SymPy  to get the asymptotic expansion of  (up to ). Check your

previous conjecture.

2. 

Sn
Sn (1/ )n5

Sn = \frac{- 2 \sqrt[3]{18} n + \sqrt[3]{12} \left(\sqrt{3} \sqrt{4 n^{
3} + 27} + 9\right)^{\frac{2}{3}}}{6 \sqrt[3]{\sqrt{3} \sqrt{4 n^{3} + 
27} + 9}}
Taylor expansion when epsilon -> 0 : -1/n**4 + 1/n + O(n**(-5), (n, oo)
)

var('x')
var('n',integer=True)

# Question 1.
Solutions=solve(x**3+n*x-1,x)
Sn=simplify(Solutions[0])  # The two other solutions are complex numbers
print("Sn = "+str(latex(Sn)))

# Question 2.
Taylor=series(Sn,n,oo,5)
print("Taylor expansion when epsilon -> 0 : "+str(Taylor))



Answers.
According to the above script,1. 

SymPy gives

Indeed, this goes to zero as expected.

2. 

.
−2 n +18⎯ ⎯⎯⎯√3 12⎯ ⎯⎯⎯√3 ( + 9)3⎯⎯√ 4 + 27n3

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√
2
3

6 + 93⎯⎯√ 4 + 27n3
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√

⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√3

= − + (1/ ).Sn
1
n

1
n4

n5

(Bonus) Exercise 6. Solving equations: when SymPy needs help
We consider the following equation:

where  is a positive parameter. A quick analysis shows that if  is small enough then
( ) has a unique real solution, that we denote by .

− 3ε − 1 = 0,X 5 X 4 (⋆)
ε ε > 0

⋆ Sε

The degree of this equation is too high to be solved by SymPy :

Indeed, SymPy  needs help to handle this equation.

In the above script we plotted the function  for some small .
This suggests that .

f (x) = − 3ε − 1x5 x4 ε
= 1limε→0 Sε

[]

var('x')
var('e')
solve(x**5-3*e*x**4-1,x)



Do it yourself.
We admit that  can be written as

for some real . Use SymPy  to �nd .

(You can use any SymPy  function already seen in this notebook.)

Sε
= 1 + rε + s + ( ),Sε ε2 ε3

r, s r, s

-3*eps + 5*eps*r + 5*eps**2*s - 12*eps**2*r + 10*eps**2*r**2 + O(eps**3
)

[(3/5, 18/25)]

RangeOf_x=np.arange(0,2,0.01)

def ToBeZero(x,eps):
return x**5+x**4*(-3*eps) -1

eps=0.05
plt.plot(RangeOf_x,[ToBeZero(x,eps) for x in RangeOf_x],label='x**5+x**4*(-3*eps)-1')

plt.xlim(0, 2)
plt.ylim(-1, 1)
plt.plot([-2,2],[0,0])
plt.plot([1,1],[-2,2])
plt.xlabel('Value of x')
plt.title('Location of S_eps, with eps ='+str(eps))
plt.legend()
plt.show()

var('r')
var('s')
var('eps')
Expression=ToBeZero(1+r*eps+s*eps**2+O(eps**3),eps)

Simple=simplify(Expression)
print(Simple)

solve([-3+5*r,5*s-12*r+10*r**2],[r,s])



Answers. If we plug  into equation ( ) we obtain (with the
script):

If we divide equation ( ) by  we obtain

which yields  by letting , i.e. .

If we plug this into ( ) and divide by  we obtain

which gives , i.e. .

Finally,

1 + rε + s + ( )ε2 ε3 ⋆

0 = −3ε + 5rε + 5s − 12r + 10 + ( ).ε2 ε2 r2ε2 ε3 ()
 ε

0 = −3 + 5r + 5sε − 12rε + 10 ε + ( ),r2 ε2

−3 + 5r = 0 ε → 0 r = 3/5

 ε2

0 = 5s − 12r + 10 + (ε),r2

5s − 12r + 10 = 0r2 s = 18/25

= 1 + ε + + ( ),Sε
3
5

18
25 ε

2 ε2


