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Abstract

The two-dimensional probabilistic cellular automaton Epidemic models the spread
of an epidemic without recovering on graph. We discuss some well-known and less
well-known properties of Epidemic on a finite grid and its analogous on the infinite
square lattice: the Eden model.

This survey is intended for non-probabilists and gives a detailed study of the
robustness of a cellular automaton with respect to several sourcess of randomness.

1 Introduction
We discuss here several random perturbations of a particular (yet very interesting) 2D
probabilistic cellular automaton: Epidemic. This is a "toy model" for the propagation
in a graph of an epidemic without recovering. The goal of this article is to analyze
the behaviour of Epidemic with respect to several sources of randomness:

• randomness in the updating scheme,

• randomness in the initial configuration,

• randomness (or defaults) of the graph.

We will discuss theses aspects on two variants of Epidemic: on a finite square grid
(in Section 2) and the analogous rule on the infinite square lattice (Section 3). The
latter variant is often called Eden model by physicists and probabilists.

The main questions that we will discuss are

• On a finite grid: how long does it take for the spread to occupy the whole grid?

• On Z2: what is the typical shape of the spread after a large time?

• For both models: how do these behaviours depend on the different parameters
of the models?

Beyond its own interest, we believe that Epidemic is a good candidate to study
robustness of Cellular Automata with respect to randomness. Its behaviour is rich
enough to reveal some interesting phenomena and simple enough to allow rigorous
analysis. Some results stated here are all more or less folklore, but the statements
are not so easy to find in litterature, our goal was to present them in a self-contained
way. The results on Epidemic are all rigorously proved, the discussion on the Eden
model is more thought as a reading-guide in the probabilistic litterature.
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2 Epidemic on a finite grid

2.1 The model
Let L ≥ 3 be an integer, we denote by Λ the square grid L×L, with torical boundary
conditions (i.e we identify Λ with Z/LZ×Z/LZ). Let n = L2 be the number of cells
in Λ, n will be our scale for the asymptotics.

We endow Λ with the usual graph distance, the ball B(c, r) with center c and radius
r being the set of cells c′ such that there exists a path of 0 ≤ ` ≤ r neighbouring cells

c = c0 → c1 → c2 · · · → c` = c′.

A configuration σ is one of the 2n elements of {0, 1}Λ. For c ∈ Λ, σc ∈ {0, 1} is
the state of cell c in configuration σ.

For c in Λ, N (c) is the so-called Von Neumann neighbourhood of c:

N (c) = {c, c+ (1, 0), c+ (−1, 0), c+ (0, 1), c+ (0,−1)}

where + stands for addition modulo L. In other words N (c) = B(c, 1).
We now can define Epidemic as a stochastic dynamical system. Each cell in

state 0 (healthy), when it is updated, turns into state 1 (infected) if one at least of
its neighbours is infected. There is no recovering: a 1 remains 1 forever. Besides,
updating are random and independent from each other.

More formally:

Definition 1 (Epidemic in the α-synchronous dynamics). Let α ∈ (0, 1), the α-
synchronous Epidemic cellular automaton is the stochastic process

(
σt
)
t≥0

with values
in {0, 1}Λ such that σ0 ∈ {0, 1}Λ and whose evolution is given in the following way.

For every t ≥ 0, given σt at time t, the configuration σt+1 is defined as follows:
each cell in Λ is updated independently with probability α (independently from the past
and from the n− 1 other cells) ;

• If c is updated, σt+1
c = 1 if and only if at least one cell in N (c) is in state 1 at

time t;

• Otherwise, σt+1
c = σtc.

The sequence (σt) is then a discrete-time Markov chain with values in {0, 1}Λ.
Obviously it eventually reaches one of the two fixed configurations 0Λ our 1Λ. The
configuration 0Λ is isolated :

σt reaches 0Λ ⇔ σ0 = 0Λ.

From now on we the trivial case σ0 = 0Λ.

Definition 2 (Convergence time). For an initial configuration σ0 6= 0Λ, the conver-
gence time Tn(σ0) is the first time at which all cells are infected:

Tn(σ0) = min
{
t ≥ 0 such that σt = 1Λ

}
.

In this section we will focus on the asymptotic behaviour of the expectation of
this random variable: E

[
Tn(σ0)

]
, in worst and typical cases.
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t = 0 t = 30n t = 85n t = 130n

Figure 1: A simulation of α-synchronous Epidemic with α = 0.1 and L = 50, σ0 has only 3
cells in state 1. Simulations were performed with FiatLux: http://fiatlux.loria.fr/.

2.2 The Worst Expected Convergence Time
We first consider the worst expected convergence time (WECT) for Epidemics , i.e.
the mean convergence time when σ0 = σw where σw is such that

E [Tn(σw)] = max
σ0∈{0,1}Λ
σ0 6=0Λ

E
[
Tn(σ0)

]
.

Obviously such σw’s are exactly the n configurations with a single 1.
Before stating the result, let us motivate the analysis of the WECT:

1. In dimension one, Fatès et al. [FMST06] have studied the WECT of the Ele-
mentary Cellular Automata with two quiescent states (see their article for the
definitions). Their work revealed that the asymptotic behaviour of the WECT
provides a relevant classification of 1D cellular automata. Precisely, they have
shown that these rules may be classified into 5 families, according to whether
the WECT is Θ(n log n), Θ(n2), Θ(n3), Θ(n2n) or infinite1. This approach
was extended in [FG09] for a family of 2D cellular automata (in particular for
Epidemic).

2. Another motivation comes from algorithmic complexity theory, since cellular
automata are often thought as model in computability theory. With this point
of view, it is natural to ask what happens when the system starts from the
“worse” configuration.

3. Alternatively, if we think of cellular automata as (simplified!) models of physical
or biological systems, studying the WECT provides us with an estimation of the
maximum time needed to go back to equilibrium when a perturbation is applied.

Theorem 1 (Worst Expected Convergence Time). For Epidemics on a finite grid
with n cells, for all α ∈ (0, 1), if n is large enough,

√
n

8α
≤ E [Tn(σw)] ≤ 3

√
n

α
.

Remark. • In [FG09], a very similar result (but less precise, because of log(n)
terms in both sides of the inequality) was proved in asynchronous dynamics.

• We believe that E [Tn(σw)] /
√
n converges to a constant, and more precisely that

the sequence of random variables Tn(σw)/
√
n converges in probability. We have

not been able to prove so, and the usual tool ( subadditivity theory, see [BS10]
for instance) to deal with similar problems does not seem to work here.

1We write fn = Θ(gn) when there exist two positive numbers c1, c2 such that, for n large enough,
c1gn ≤ fn ≤ c2gn.
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Proof.
Lower bound. Let c be the only cell in state 1 in σw, and let c′ be one of the cells of
Λ which is at distance bL/2c from c, where bxc is the integer part of x. It is enough
to prove that E[τc′ ] ≥ L

8α , with

τc′ = min
{
t ≥ 0, σtc′ = 1

}
,

since obviously Tn(σw) ≥ τc′ .

Λ

c c’

Figure 2: The configuration at time τc′ .

Set k = bL/4αc, we will prove that if L is large enough

P(τc′ < k) ≤ 1/2. (1)

This proves the upper bound since then

E [Tn(σw)] ≥ E[τc′ ] ≥
k∑
r=1

P(τc′ ≥ r) ≥
k∑
r=1

1/2 = 1
2 (bL/4αc+ 1) ≥

√
n

8α
.

We focus on (1). The proof is not very difficult but quite technical, here is the
general strategy. As often in this kind of optimization problem there is a trade-off
between two phenomena:

• There is a huge number of paths (we will bound this number by 3j in the proof)
going from c to c′ along which successive updatings would infect cell c′;

• On the other hand, if we fix such a path, it is very unlikely if k is well-chosen
(this will be our Lemma 1 below) that its cells are updated in the proper order
before k.

We now go into the details. Assume that τc′ ≤ k, then there is a j with bL/2c ≤ j ≤ k
and a path P made of j disjoint cells, going from c to c′:

P =
{
c = c0 → c1 → c2 → · · · → cj = c′

}
such that, during the k first time units, cells c1, . . . , cj are updated in this order. This
gives

P(τc′ ≤ k) = P

 k⋃
j=bL/2c

⋃
P,|P|=j

{c1, c2, . . . , cj are updated in this order and before k}


≤

k∑
j=bL/2c

∑
P,|P|=j

P (c1, c2, . . . , cj are updated in this order and before k) ,
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(here we used P(∪) ≤
∑

P, often called union bound). The second sum runs over
all paths of j cells going from c to c′. Fix such a P and bound the last probability.
Among times {1, 2, . . . , k}, there are times t1 < t2 < · · · < tj such that, at time tj ,
cell cj is updated. Each updating being independent we have

P (c1, c2, . . . , cj are updated in this order and before k) = P (Binom(k, α) ≥ j) ,

where Binom(k, α) has the binomial distribution with parameters k, α and has ex-
pectation kα. If kα � j then this last probability is small, the following lemma is
useful, this is for instance (2.5) in [JŁR00].

Lemma 1 (Right-deviations for the binomial). For all j ≥ kα,

P (Binom(k, α) ≥ j) ≤ exp

(
−3

(j − kα)2

2kα+ j

)
.

There are less that 3j paths of length j going from c to c′ (this is a rough bound
but sufficient here), we have

P(τc′ ≤ k) =

k∑
j=bL/2c

3j exp

(
−3

(j − kα)2

2kα+ j

)
.

One can check that j 7→ 3j exp
(
−3 (j−kα)2

2kα+j

)
is non-increasing for L/2 ≤ j ≤ k (recall

kα ≈ L/8) and thus, skipping the integer parts in order to lighten notations,

P(τc′ ≤ k) ≤ k ×max
j

{
3j exp

(
−3

(j − kα)2

2kα+ j

)}
≤ k exp

(
log(3)L/2− 3

(L/2− kα)2

2kα+ L/2

)
≤ L

4α
exp

(
log(3)L/2− 3L

(1/2− 1/4)2

2/4 + 1/2

)
≤ L

4α
exp(−0.2× L),

and therefore is less than 1/2 if L is large (depending on α). We have proved (1).
Upper bound. We will prove that for L large enough and k ≥ 2L/α

P(Tn(σw) > k) ≤ L2 exp(−kα/32). (2)

This yields the upper bound since

E [Tn(σw)] =
∑
k≥1

P(Tn(σw) ≥ k)

≤ 2
√
n/α+

∑
k≥2
√
n/α

P(Tn(σw) ≥ k)

≤ 2
√
n/α+ L2

∑
k≥2
√
n/α

exp(−kα/32) ≤ 3
√
n/α

for large L.
Let us prove (2). First, for each c′ 6= c, we choose (in a non-random way) a path

Pc′ among all shortest paths c→ c′: Pc′ can be written

Pc′ =
{
c = c0 → c1 → c2 → · · · → cj = c′

}
where j ≤ L/2 is the distance between c and c′.
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If Tn(σw) > k then there is c′ which is still in state 0 at time k. In particular there
is j ≤ L/2 and a cell c′ at distance j such that cells c1, c2, . . . , cj of its associated
path Pc′ have not been updated in this order before time k :

P(Tn(σw) > k) = P

(⋃
c′∈Λ

{c1, c2, . . . , cj are not updated in this order and before k}

)
≤ card(Λ) max

c′∈Λ
P (c1, c2, . . . , cj are updated in this order and before k) .

and by the same argument as for the lower bound

P (c1, c2, . . . , cj are updated in this order and before k) = P (Binom(k, α) < j) ,

now we need the following bound, this is (2.6) in [JŁR00].

Lemma 2 (Left-deviations for the binomial). For all j ≤ kα,

P (Binom(k, α) < j) ≤ exp

(
−(kα− j)2

2kα

)
.

For all j ≤ L/2, we have j ≤ kα (recall k ≥ 2L/α) and we can apply the lemma :

P(Tn(σw) > k) ≤ L2 max
1≤j≤L/2

exp

(
−(kα− j)2

2kα

)
≤ L2 exp

(
−(kα− L/2)2

2kα

)
≤ L2 exp

(
−(kα− 3kα/4)2

2kα

)
since (kα− L/2)2 ≥ kα/2

≤ L2 exp (−kα/32) ,

we have proved (2).

2.3 Typical convergence time
We now estimate the typical expected convergence time, when σ0 is drawn uniformly
at random in {0, 1}Λ.

Typn :=
1

2n

∑
σ0∈{0,1}Λ

E
[
Tn(σ0)

]
.

As expected, Typn is much smaller than in the worst case.

Theorem 2 (Typical expected convergence time). For n large enough,

1

4α
log n ≤ Typn ≤

6

α
(log n)3/2.

Proof. We closely follow ([Ger08], Chap.2).
Lower bound. The number of cells in state 0 in σ0, which is a Binomial (n, 1/2),
is larger than n/2 with more than 50% chance. For such σ0, the convergence takes
more time than the time needed to update all these cells at least once. Thus

E
[
Tn(σ0)

]
≥ E

[
max

{
G1,G2, . . . ,Gn/2

}]
,

where Gi are i.i.d geometric random variables with mean 1/α. For large k we have
(see [SR90] for instance)

2 log(k)

3α
≤ E [max {G1,G2, . . . ,Gk}] ≤

2 log(k)

α
(3)
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and then, for large enough n, E
[
Tn(σ0)

]
≥ 2

3α log(n/2) ≥ 1
2α log(n) when σ0 has more

than n/2 cells in state 0. Now,

Typn =
1

2n

∑
σ0∈{0,1}Λ

E
[
Tn(σ0)

]
≥ 1

2n

∑
σ0 with

more than n/2 0’s

E
[
Tn(σ0)

]

≥ 1

2n
card

{
σ0 with more than n/2 0’s

} 1

2α
log(n)

≥ 1

2n
2n

2

1

2α
log(n),

hence the lower bound.
Upper bound. The first step is to show that with high probability there is no ball
of radius 3

√
log(L) which is full of 0’s in the initial configuration σ0.

Precisely, set a(L) = b3
√

logLc, introduce the vent

A =
⋃
c∈Λ

{ the ball of center c and radius a(L) is full of 0’s at time 0. }

=
⋃
c∈Λ

{
∀c′ ∈ B(c, a(L)), σ0

c′ = 0
}
.

By the union bound,

P(A) ≤
∑
c∈Λ

P
(
∀c′ ∈ B(c, a(L)), σ0

c′ = 0
)
.

Each ball B(c, a(L)) contains more than 2a(L)2 cells, it is full of 0’s with probability
less than (1/2)2a(L)2 . We get (we skip integer parts once more)

P(A) ≤ card(Λ)(1/2)2a(L)2 ≤ L2(1/2)2a(L)2 ≤ exp
(
2 logL− 2× 32 log(L) log 2

)
≤ 1/L = 1/

√
n

(for large n). Let us write
1

2n

∑
σ0

E[T (σ0)] =
1

2n

∑
σ0 such that
A is true

E[T (σ0)] +
1

2n

∑
σ0 such that
A is false

E[T (σ0)],

≤ P(A) max
σ0 such that
A is true

E[T (σ0)] + P(not A) max
σ0 such that
A is false

E[T (σ0)],

≤ 1/
√
n max
σ0 such that
A is true

E[T (σ0)] + 1× max
σ0 such that
A is false

E[T (σ0)]. (4)

We bound both terms :

• maxσ0 such that
A is true

E[T (σ0)] is a O(
√
n) by the upper bound of the WECT;

• If A is false then every 0 is less than a(L) away from a 1. The configuration
has thus converged before the time at which each cell has been updated a(L)
times. By (3), it takes less than 2 log(n)/α in average to update the n cells at
least once. Then

max
σ0;A is false

E[T (σ0)] ≤ a(L)
2

α
log(n).

And (4) yields

Typn ≤ cst
√
n

1√
n

+ 3

√
log(
√
n)

2

α
log(n) ≤ 6

α
log(n)3/2,

for large enough n.

Remark. It is in fact possible (but tedious) using (2) to improve the upper bound
from O(log(n)3/2) to O(log(n)). The idea is that a ball of 0’s of radius log(L) is filled
with 1’s in less than O(log(L)) time steps (with high probability).
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Discussion
Our aim here was to present with self-contained proofs some quantitative results
that did not seem to appear in litterature. It is worth noting that many natural
questions still remain open: in particular the order of magnitude of the variance of
Variance(Tn(σw) is still unknown.

3 Epidemics in Z2: the Eden model
We now consider the analogous of Epidemics on the infinite lattice Z2, it is usually
refered to as the Eden model [Ede61] or Richardson’s model [Ric73]. Let α > 0, we
consider the stochastic process

(
σt
)
t≥0

with values in {0, 1}Z
2

defined as follows:

• σ0
0 = 1 and σ0

c = 0 for c 6= 0, where 0 is the origin of Z2.

• At time t + 1, each 0 that has a neighbour in state 1 in σt turns into 1 with
probability α, independently from the past and the other cells.

Figure 3: The Eden model with α = 0.02, at different times up to 106.

We are interested in the asymptotic behaviour
(
σt
)
t≥0

. We observe on simulations
(Fig. 3) that the component of 1’s seems to grow like a particular shape. Richardson
[Ric73] has proved that it has indeed a limiting shape, in the following sense.

Theorem 3 (Limiting shape theorem for the Eden model). Let Bt be the set of cells
in state 1 at time t. There is a non-random set B? ⊂ R2 which is compact, convex
and non void such that for every ε > 0,

P
(
B?(1− ε) ⊂

Bt
t
⊂ B?(1 + ε)

)
t→+∞→ 1.

This result was further improved by [CD81] into an almost-sure convergence.

3.1 The link with First-passage percolation
The Eden model is a dynamical model of growth process but in fact it can be seen as
a static model. To do so, set as before, for c′ ∈ Z2,

τc′ = min
{
t ≥ 0, σtc′ = 1

}
.
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(1-ε)B?

(1+ε)B?Bt
t

Figure 4: What Theorem 3 says, for large t.

As in the previous section, τc′ ≤ k if and only if there is a path P of j ≤ k neighbouring
cells going from 0 to c′

P =
{
0→ c1 → c2 → · · · → cj = c′

}
such that successive updating along P turn c′ into 1. Then one can show that, for
each fixed c′,

τc′
(d)
= min
P:0→c′

|P|∑
i=1

gci , (5)

where
{
gc, c ∈ Z2

}
is a family of i.i.d. geometric random variables with mean 1/α

and
(d)
= means "are equal in distribution". Here gci is the time needed to update ci,

once one of its neighbours is 1.
Thus, a way to construct τc′ is to draw for each cell in Z2 some independent

random times gci , and then τc′ is the sum of these times over the path 0 → c′ such
that the sum is minimal. This model is known as First-passage percolation (FPP)
and has been studied for the first time by Hammersley and Welsh [HW65]. We refer
to [BS10] for a modern introduction to FPP and its connections with growth models.

The full connection between τc′ ’s in the Eden model and first-passage percolation
can be written as follows:

Proposition 1 (Eden model is FPP). Let
{
gc, c ∈ Z2

}
be a family of i.i.d. geometric

random variables with mean 1/α. Then

{
τc

}
c∈Z2

(d)
=
{

min
P:0→c

|P|∑
i=1

gci

}
c∈Z2

.

where the min is taken over all paths going from 0 to c:

P =
(
0 = c0 → c1 → . . . c|P| = c

)
and |P| is the number of cells of P.

The connection between Eden model and FPP is usually attributed to Richard-
son, even if first-passage percolation is not clearly mentioned in [Ric73]. Surprisingly
enough, it seems that there is no rigorous proof of Proposition 1 available in littera-
ture. It is often considered as folklore, but it is not so easy to write down a complete
proof (the main difficulty is to establish the equality for the whole family of τc’s and
not only for a fixed c).
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3.2 Influence of the lattice
The Eden model being a toy model for propagation, one might wonder if the properties
proved in this particular model are robust under various perturbations of the lattice.
This question is not clearly understood.

Since [Ric73], the following conjecture is attributed to Eden:

Conjecture (Eden conjecture). For the Eden model in continuous time, the set of
cells in state 1 is asymptotically shaped as a disc: B? is a euclidian ball.

The Eden model in continuous time is defined as before, except that the updating
times are exponentially distributed. There are some simulations in [Ede61], but the
conclusions are not so clear:

As yet the samples of configurations computed in this way appear to be too few to
justify anything more than a few qualitative statements. It is to be seen that the

colony is essentially circular in outline.

In 1984, H.Kesten had the intuition that this conjecture should be false, at least in
high dimensions, for geometrical reasons. He disproved the conjecture for d > 600000
(see [Kes86]), since then [Dha88] and [CEG11] improved the result up to dimension
d > 35 .

Of course we are far from a physical or biological model, yet this result says
something interesting: the asymptotic properties of the Eden model strongly depend
on the lattice on which it is constructed. We know that this is not the case for the
position of a standard random walk on a regular lattice, whose asymptotic law does
not depend on the lattice and is the normal distribution. It seems that the Eden
model is sensible to the microscopic structure of the lattice.

3.3 Eden model and random defaults
What happens in Theorem 3 if some proportion of cells is immunised against infec-
tion? How does it change the growth of Bt?

Figure 5: The Eden model with immunised cells (gray).

Assume that each cell is originally immunised independently with probability p.
Obviously Bt cannot grow infinitely if the following event E occurs:

• either 0 is immunised,

10



• or there is a path of immunised cells surrounding 0.

Of course P(E) ≥ P(0 is immunised) ≥ p > 0 but we can prove (see [Gri99] for
instance) that if p is small enough then P(E) < 1. In the case where E does not
occur, it is possible than Bt grow infinitely and the growth is linear, as in the initial
model. This has been proved rigorously by [GM04], we need a few notations to state
the result.

Let ~n be the cell of coordinates (n, 0). Let A be the (random) set of integers n
such that there is a path of non-immunised cells going from the origin to ~n. If E does
not occur then there are infinitely many cells than can be infected and if n ∈ A, the
first time τ~n at which ~n is in Bt is finite (almost-surely).

Theorem 4 (Linear growth for the Eden model with defaults). There exists µ > 0
such that, if E does not occur,

lim
n→+∞,
n∈A

τ~n
n

= µ almost surely,

where the limit is taken along the random subsequence {n ∈ A}.

Discussion
Much is known now about the quantitative properties of the Eden model. In par-
ticular, many efforts have been made in order to understand the dependence of the
limiting shape with respect to the different parameters of the model: dependence with
respect to α ([CK81],[Mar02]) and to p [BEGG14].

We have just tried here to present a few results for non-probabilists, we refer to
[BS10] for a nice and modern introduction to this topic. In particular, it is discussed
of the variant in which there is a competition between two epidemics.
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