Chapitre 3

La loi normale

Université de Paris Ouest

2012-2013

Sommaire

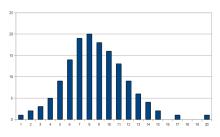
- 1 Le modèle de la loi normale
 - Un exemple
 - Propriétés de la loi normale
- 2 Calculs pratiques

Un exemple pour commencer : Test de mémoire

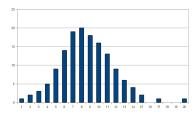
Étude de la **capacité de mémoire** d'adultes atteints d'une maladie neurologique.

Chaque individu lit 30 mots et doit ensuite en réciter le plus possible.

- ▶ Population $P = \{$ patients atteints de la maladie $\}$
- ▶ Variable **quantitative** *X* = "nombre de mots retenus"
- ▶ 2 paramètres μ, σ .



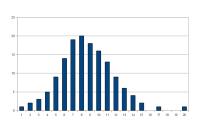
La courbe "en cloche"

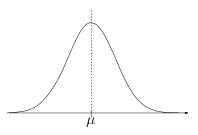


En sciences humaines on observe souvent des distributions

- ightharpoonup plutôt **symétriques** autour de μ
- ▶ avec une forme de cloche

La courbe "en cloche"





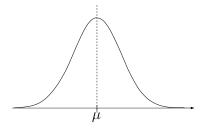
En sciences humaines on observe souvent des distributions

- \blacktriangleright plutôt **symétriques** autour de μ
- ▶ avec une forme de cloche

Pour **pouvoir faire des calculs**, on va parfois supposer que X suit une distribution "modèle", appelée **Loi normale**.

Premières propriétés de la loi normale

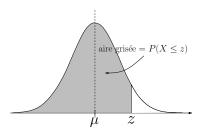
Si X suit cette distribution "modèle", on lui associe une courbe :



- ightharpoonup courbe **symétrique** par rapport à μ
- ▶ forme de cloche

Premières propriétés de la loi normale

Si X suit cette distribution "modèle", on lui associe une courbe :



- \blacktriangleright courbe **symétrique** par rapport à μ
- ► forme de cloche
- ▶ l'aire grisée représente la proportion cumulée

Pour chaque μ, σ , il existe une loi normale de moyenne μ et d'écart-type σ .

On la note
$$\mathcal{N}(\mu, \sigma)$$
.

Cas particulier

 $\mu = 0$ et $\sigma = 1$: loi normale centrée/réduite.

Pour chaque μ, σ , il existe une **loi normale de moyenne** μ **et d'écart-type** σ .

On la note
$$\mathcal{N}(\mu, \sigma)$$
.

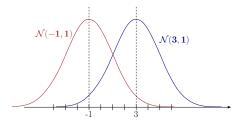
Cas particulier

 $\mu = 0$ et $\sigma = 1$: loi normale centrée/réduite.

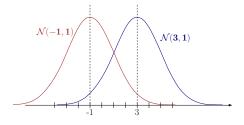
Lorsque l'on suppose qu'une variable X suit le modèle de la loi normale $\mathcal{N}(\mu, \sigma)$, on écrit

$$X \sim \mathcal{N}(\mu, \sigma)$$
.

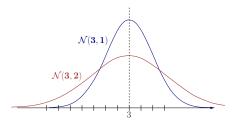
Exemples de lois normales avec moyennes différentes, même écart-type :



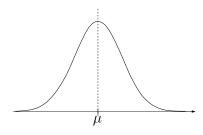
Exemples de lois normales avec moyennes différentes, même écart-type :



Exemples de lois normales avec même moyenne, écart-types différents :



Pour les plus matheux : l'équation de la courbe



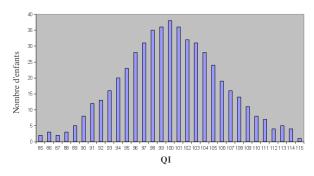
Pour la tracer à la calculatrice/ordinateur,

$$y = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Cette formule n'est pas utile pour ce cours!

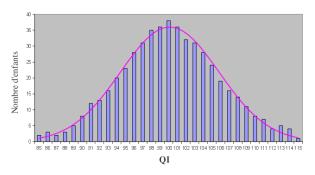
Exemple: QI

Étude sur le ${\bf QI}$ de 515 enfants du même âge, $\mu=$ 100,1, $\sigma=$ 5,7.



Exemple: QI

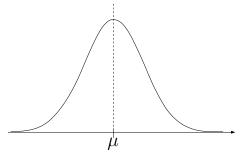
Étude sur le **QI** de 515 enfants du même âge, $\mu=100,1,~\sigma=5,7.$



En rose, courbe de la loi normale $\mathcal{N}(\mu = 100, 1; \sigma = 5, 7)$.

Loi normale $\mathcal{N}(\mu, \sigma)$: à retenir

- distribution "modèle" pour des variables quantitatives continues
- ightharpoonup moyenne μ , écart-type σ
- ► allure de la courbe :



► aires = proportions cumulées

Sommaire

- 1 Le modèle de la loi normale
- 2 Calculs pratiques
 - Loi normale centrée/réduite
 - Loi normale quelconque
 - Quantiles

Exemple

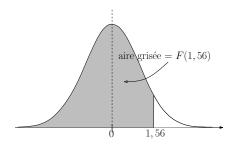
On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \leq 1,56$?

On cherche $P(X \le 1,56)$ (rappel : on écrit aussi F(1,56)).

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \leq 1,56$?

On cherche $P(X \le 1,56)$ (rappel : on écrit aussi F(1,56)).



Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \leq 1,56$?

On cherche $P(X \le 1,56)$ (rappel : on écrit aussi F(1,56)). On cherche 1,56 dans la table :

	 0,06	
: 1,5 :	 0.9406	

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \leq 1,56$?

On cherche $P(X \le 1,56)$ (rappel : on écrit aussi F(1,56)). On cherche 1,56 dans la table :

Donc $P(X \le 1, 56) = 0,9406$.

Pour 94,06 % des individus, la variable X est inférieure à 1,56.

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \geq 1,49$?

On cherche $P(X \ge 1, 49)$.

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \geq 1,49$?

On cherche $P(X \ge 1,49)$. On écrit d'abord

$$P(X \ge 1,49) = 1 - P(X \le 1,49) = 1 - F(1,49)$$

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \geq 1,49$?

On cherche $P(X \ge 1,49)$. On écrit d'abord

$$P(X \ge 1,49) = 1 - P(X \le 1,49) = 1 - F(1,49)$$

On cherche 1,49 dans la table.

	 	0,09
: 1,4 :	 	0.9319

Donc
$$P(X \le 1,49) = 0,9319$$
.
Soit $P(X \ge 1,49) = 1 - 0.9319 = 0.0681$.

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \leq -1, 1$?

Exemple

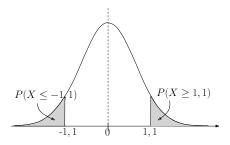
On suppose qu'une certaine variable $X\sim\mathcal{N}(0,1).$ Pour quelle proportion d'individus est-ce que $X\leq -1,1$?

On cherche $P(X \le -1, 1)$, c'est-à-dire F(-1, 1).



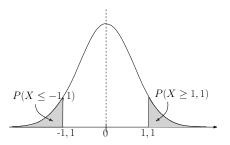
Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \leq -1, 1$?



Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(0,1)$. Pour quelle proportion d'individus est-ce que $X \leq -1, 1$?

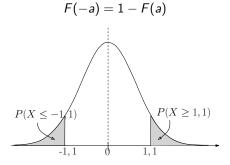


Mais on sait traiter les > :

$$\mathbb{P}(X \ge 1, 1) = 1 - \mathbb{P}(X \le 1, 1) = 1 - 0,8643.$$

Finalement, $\mathbb{P}(X < -1, 1) = 0, 1357$.

À retenir :



par exemple :
$$F(-1,1) = 1 - F(1,1)$$
.

Calculs avec la $\mathcal{N}(0,1)$, tous les cas

Pour n'importe quel a > 0,

Loi normale quelconque $\mathcal{N}(\mu, \sigma)$

Pour faire des calculs avec une $\mathcal{N}(\mu, \sigma)$, on se ramène à la loi $\mathcal{N}(0,1)$.

Loi normale quelconque $\mathcal{N}(\mu, \sigma)$

Pour faire des calculs avec une $\mathcal{N}(\mu, \sigma)$, on se ramène à la loi $\mathcal{N}(0,1)$.

Théorème

Si
$$X \sim \mathcal{N}(\mu, \sigma)$$
 alors $\frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$

On dit que l'on **centre et réduit** *X*.

Loi normale quelconque $\mathcal{N}(\mu, \sigma)$

Pour faire des calculs avec une $\mathcal{N}(\mu, \sigma)$, on se ramène à la loi $\mathcal{N}(0,1)$.

Théorème

Si
$$X \sim \mathcal{N}(\mu, \sigma)$$
 alors $\frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1) = Z$.

On dit que l'on **centre et réduit** *X*.

On utilise la lettre Z pour désigner une loi normale centrée/réduite.

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(11;2)$. Pour quelle proportion d'individus est-ce que $X \leq 14$?

On cherche $P(X \le 14)$.

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(11; 2)$. Pour quelle proportion d'individus est-ce que $X \leq 14$?

On cherche $P(X \le 14)$.

▶ On centre et on réduit $X : \frac{X-11}{2} \sim \mathcal{N}(0,1)$.

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(11; 2)$. Pour quelle proportion d'individus est-ce que $X \leq 14$?

On cherche $P(X \le 14)$.

▶ On centre et on réduit $X : \frac{X-11}{2} \sim \mathcal{N}(0,1)$.

•

$$\mathbb{P}(X \le 14) = \mathbb{P}\left(\frac{X - 11}{2} \le \frac{14 - 11}{2}\right)$$
$$= \mathbb{P}(Z \le 1, 5)$$

▶ On cherche 1,5 dans la table.

Exemple

On suppose qu'une certaine variable $X \sim \mathcal{N}(11;2)$. Pour quelle proportion d'individus est-ce que $X \leq 14$?

On cherche $P(X \le 14)$.

▶ On centre et on réduit $X : \frac{X-11}{2} \sim \mathcal{N}(0,1)$.

•

$$\mathbb{P}(X \le 14) = \mathbb{P}\left(\frac{X-11}{2} \le \frac{14-11}{2}\right)$$

= $\mathbb{P}(Z \le 1,5)$

▶ On cherche 1,5 dans la table.

On trouve finalement $P(X \le 14) = 0,9332$.

Exemple

On cherche le quantile à 97,5% pour la $\mathcal{N}(0,1)$.

Cela revient à trouver a tel que $P(Z \le a) = 0,975$.

Exemple

On cherche le quantile à 97,5% pour la $\mathcal{N}(0,1)$.

Cela revient à trouver a tel que $P(Z \le a) = 0,975$. On lit la table à **l'envers** :

	 0,06	
: 1,9 :	 0.9750	

Exemple

On cherche le quantile à 97,5% pour la $\mathcal{N}(0,1)$.

Cela revient à trouver a tel que $P(Z \le a) = 0,975$. On lit la table à **l'envers** :

Donc $P(X \le 1,96) = 0,9750$. Le quantile recherché est donc 1,96.

Exemple

On cherche le quantile à 97,5% pour la $\mathcal{N}(0,1)$.

Cela revient à trouver a tel que $P(Z \le a) = 0,975$.

On lit la table à l'envers :

Donc $P(X \le 1,96) = 0,9750$. Le quantile recherché est donc 1,96.

Notation

Le quantile d'ordre α pour la loi normale centrée/réduite est noté z_{α} . Par exemple, $z_{0.975} = 1,96$.

Exemple

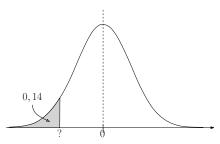
On cherche le quantile à 14% pour la $\mathcal{N}(0,1)$.

Cela revient à trouver a tel que $P(Z \le a) = 0, 14$.

Exemple

On cherche le quantile à 14% pour la $\mathcal{N}(0,1)$.

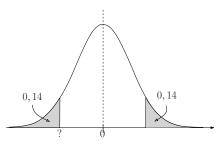
Cela revient à trouver a tel que $P(Z \le a) = 0, 14$. Il n'y a pas de nombre < 0, 5 dans la table!



Exemple

On cherche le quantile à 14% pour la $\mathcal{N}(0,1)$.

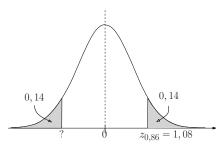
Cela revient à trouver a tel que $P(Z \le a) = 0, 14$. Il n'y a pas de nombre < 0, 5 dans la table!



Exemple

On cherche le quantile à 14% pour la $\mathcal{N}(0,1)$.

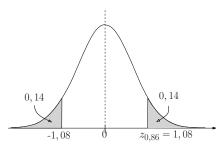
Cela revient à trouver a tel que $P(Z \le a) = 0, 14$. Il n'y a pas de nombre < 0, 5 dans la table!



Exemple

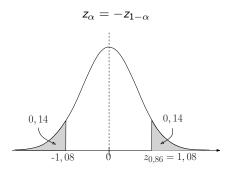
On cherche le quantile à 14% pour la $\mathcal{N}(0,1)$.

Cela revient à trouver a tel que $P(Z \le a) = 0,14$. Il n'y a pas de nombre < 0,5 dans la table!



Le quantile est donc $z_{0.14} = -1,08$.

À retenir :



par exemple : $z_{0,14} = -z_{0,86}$.

Quantile d'une loi normale quelconque

Notons Q_{α} le quantile d'ordre alpha d'une **loi normale quelconque** $\mathcal{N}(\mu, \sigma)$.

À retenir :

$$Q_{\alpha} = \mu + \sigma \times z_{\alpha}.$$

On "déréduit" et on "décentre" le quantile de la loi normale centrée/réduite.

Quantile d'une loi normale quelconque

Notons Q_{α} le quantile d'ordre alpha d'une **loi normale quelconque** $\mathcal{N}(\mu, \sigma)$.

À retenir :

$$Q_{\alpha} = \mu + \sigma \times z_{\alpha}.$$

On "déréduit" et on "décentre" le quantile de la loi normale centrée/réduite.

Exercice

Quel est le quantile à 90% pour une loi normale $\mathcal{N}(11,2)$?